scholarly journals Human immunodeficiency virus p24 antigen and antibody, herpes simplex virus-2 IgM and tumor necrosis factor alpha plasma levels in adult female children living in single-parent households

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Mathew Folaranmi Olaniyan ◽  
Tolulope Busayo Olaniyan
2008 ◽  
Vol 82 (16) ◽  
pp. 7790-7798 ◽  
Author(s):  
Marlynne Q. Nicol ◽  
Jean-Marie Mathys ◽  
Albertina Pereira ◽  
Kevin Ollington ◽  
Michael H. Ieong ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV)-positive persons are predisposed to pulmonary infections, even after receiving effective highly active antiretroviral therapy. The reasons for this are unclear but may involve changes in innate immune function. HIV type 1 infection of macrophages impairs effector functions, including cytokine production. We observed decreased constitutive tumor necrosis factor alpha (TNF-α) concentrations and increased soluble tumor necrosis factor receptor type II (sTNFRII) in bronchoalveolar lavage fluid samples from HIV-positive subjects compared to healthy controls. Moreover, net proinflammatory TNF-α activity, as measured by the TNF-α/sTNFRII ratio, decreased as HIV-related disease progressed, as manifested by decreasing CD4 cell count and increasing HIV RNA (viral load). Since TNF-α is an important component of the innate immune system and is produced upon activation of Toll-like receptor (TLR) pathways, we hypothesized that the mechanism associated with deficient TNF-α production in the lung involved altered TLR expression or a deficit in the TLR signaling cascade. We found decreased Toll-like receptor 1 (TLR1) and TLR4 surface expression in HIV-infected U1 monocytic cells compared to the uninfected parental U937 cell line and decreased TLR message in alveolar macrophages (AMs) from HIV-positive subjects. In addition, stimulation with TLR1/2 ligand (Pam3Cys) or TLR4 ligand (lipopolysaccharide) resulted in decreased intracellular phosphorylated extracellular signal-regulated kinase and subsequent decreased transcription and expression of TNF-α in U1 cells compared to U937 cells. AMs from HIV-positive subjects also showed decreased TNF-α production in response to these TLR2 and TLR4 ligands. We postulate that HIV infection alters expression of TLRs with subsequent changes in mitogen-activated protein kinase signaling and cytokine production that ultimately leads to deficiencies of innate immune responses that predispose HIV-positive subjects to infection.


2000 ◽  
Vol 44 (2) ◽  
pp. 405-407 ◽  
Author(s):  
Pascal Clayette ◽  
Marc Martin ◽  
Vincent Beringue ◽  
Nathalie Dereuddre-Bosquet ◽  
Karim T. Adjou ◽  
...  

ABSTRACT Amphotericin B derivatives, such as MS-8209, have been evaluated as a therapeutic approach to human immunodeficiency virus (HIV) infection. We show that MS-8209, like amphotericin B, increases tumor necrosis factor alpha (TNF-α) mRNA expression and TNF-α production and consequently HIV replication in human macrophages. These effects confirm the pharmacological risk associated with the administration of amphotericin B or its derivatives to HIV-infected patients.


1990 ◽  
Vol 172 (1) ◽  
pp. 151-158 ◽  
Author(s):  
G Poli ◽  
P Bressler ◽  
A Kinter ◽  
E Duh ◽  
W C Timmer ◽  
...  

The immunoregulatory cytokine interleukin 6 (IL-6) directly upregulates production of human immunodeficiency virus (HIV) in acutely as well as in chronically infected cells of monocytic lineage. In addition, IL-6 synergizes with tumor necrosis factor alpha (TNF-alpha) in the induction of latent HIV expression. Unlike TNF-alpha, upregulation of viral expression induced by IL-6 alone does not occur at the transcriptional level and it is not associated with accumulation of HIV RNA. However, when IL-6 and TNF-alpha synergistically stimulate HIV production, accumulation of HIV RNA and increased transcription are observed, indicating that IL-6 affects HIV expression at multiple (transcriptional and post-transcriptional) levels.


Sign in / Sign up

Export Citation Format

Share Document