scholarly journals MP16-16 PROSTATE CANCER CELLS AFTER ANDROGEN DEPRIVATION THERAPY DEMONSTRATE UNIQUE SUBSTRATE ADAPTABILITY IN THE SETTING OF METABOLIC INHIBITION

2020 ◽  
Vol 203 ◽  
pp. e221-e222
Author(s):  
Mikolaj Filon* ◽  
Tariq A Khemees ◽  
Bing Yang ◽  
Amani Gillette ◽  
Alyssa Luckey ◽  
...  
PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0172048 ◽  
Author(s):  
Michael L. Blute ◽  
Nathan Damaschke ◽  
Jennifer Wagner ◽  
Bing Yang ◽  
Martin Gleave ◽  
...  

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Magali Williamson ◽  
Ritu Garg ◽  
Claire M. Wells

Androgen receptor (AR) and glucocorticoid receptor (GR) are nuclear receptors whose function depends on their entry into the nucleus where they activate transcription of an overlapping set of genes. Both AR and GR have a role in resistance to androgen deprivation therapy (ADT), the mainstay of treatment for late stage prostate cancer. PlexinB1, a receptor for semaphorins, has been implicated in various cancers including prostate cancer and has a role in resistance to ADT. We show here that activation of PlexinB1 by Sema4D and Sema3C results in translocation of endogenous GR to the nucleus in prostate cancer cells, and that this effect is dependent on PlexinB1 expression. Sema4D/Sema3C promotes the translocation of GR-GFP to the nucleus and mutation of the nuclear localization sequence (NLS1) of GR abrogates this response. These findings implicate the importin α/β system in the Sema4D/Sema3C-mediated nuclear import of GR. Knockdown of PlexinB1 in prostate cancer cells decreases the levels of glucocorticoid-responsive gene products and antagonizes the decrease in cell motility and cell area of prostate cancer cells upon dexamethasone treatment, demonstrating the functional significance of these findings. These results show that PlexinB1 activation has a role in the trafficking and activation of the nuclear receptor GR and thus may have a role in resistance to androgen deprivation therapy in late stage prostate cancer.


2011 ◽  
Vol 25 (11) ◽  
pp. 1849-1857 ◽  
Author(s):  
June Liu ◽  
Laura E. Pascal ◽  
Sudhir Isharwal ◽  
Daniel Metzger ◽  
Raquel Ramos Garcia ◽  
...  

Abstract Determining the source of regenerated luminal epithelial cells in the adult prostate during androgen deprivation and replacement will provide insights into the origin of prostate cancer cells and their fate during androgen deprivation therapy. Prostate stem cells in the epithelial layer have been suggested to give rise to luminal epithelium. However, the extent of stem cell participation to prostate regrowth is not clear. In this report, using prostate-specific antigen-CreERT2-based genetic lineage marking/tracing in mice, preexisting luminal epithelial cells were shown to be a source of regenerated luminal epithelial cells in the adult prostate. Prostatic luminal epithelial cells could survive androgen deprivation and were capable of proliferating upon androgen replacement. Prostate cancer cells, typically exhibiting a luminal epithelial phenotype, may retain this intrinsic capability to survive and regenerate in response to changes in androgen signaling, providing part of the mechanism for the ultimate failure of androgen deprivation therapy in prostate cancer.


2019 ◽  
Author(s):  
Hannah Weber ◽  
Rachel Ruoff ◽  
Michael J. Garabedian

AbstractAndrogen deprivation therapy (ADT) is a mainstay of prostate cancer treatment, given the dependence of prostate cells on androgen and the androgen receptor (AR). However, tumors become ADT-resistant, and there is a need to understand the mechanism. One possible mechanism is the upregulation of AR co-regulators, although only a handful have been definitively linked to disease. We previously identified the Mediator subunit MED19 as an AR co-regulator, and reported that MED19 depletion inhibits AR transcriptional activity and growth of androgen-insensitive LNCaP-abl cells. Therefore, we proposed that MED19 upregulation would promote AR activity and drive androgen-independent growth. Here, we show that stable overexpression of MED19 in androgen-dependent LNCaP cells promotes growth under conditions of androgen deprivation. To delineate the mechanism, we determined the MED19 and AR transcriptomes and cistromes in control and MED19 LNCaP cells. We also examined H3K27 acetylation genome-wide. MED19 overexpression selectively alters AR occupancy, H3K27 acetylation, and gene expression. Under conditions of androgen deprivation, genes regulated by MED19 and genomic sites occupied by MED19 and AR are enriched for ELK1, a transcription factor that binds the AR N-terminus to promote select AR-target gene expression. Strikingly, MED19 upregulates expression of monoamine oxidase A (MAOA), a factor that promotes prostate cancer growth. MAOA depletion reduces androgen-independent growth. MED19 and AR occupy the MAOA promoter, with MED19 overexpression enhancing AR occupancy and H3K27 acetylation. Furthermore, MED19 overexpression increases ELK1 occupancy at the MAOA promoter, and ELK1 depletion reduces MAOA expression and androgen-independent growth. This suggests that MED19 cooperates with ELK1 to regulate AR occupancy and H3K27 acetylation at MAOA, upregulating its expression and driving androgen independence in prostate cancer cells. This study provides important insight into the mechanisms of prostate cancer cell growth under low androgen, and underscores the importance of the MED19-MAOA axis in this process.Author summaryProstate cancer is one of the most common cancers worldwide, and androgen hormones are essential for prostate cancer growth. Androgens exert their effects through a protein called the androgen receptor (AR), which turns on and off genes that regulate prostate cancer growth. Powerful drugs that block AR action by lowering androgen levels – so-called androgen deprivation therapy - are used to treat prostate cancer patients, and these yield initial success in reducing tumor growth. However, over time, tumors circumvent androgen deprivation therapy and patients relapse; in many cases, this occurs because AR becomes re-activated. The factors responsible for re-activating AR and promoting growth under androgen deprivation are not well understood. Here, we demonstrate that a subunit of the Mediator transcriptional regulatory complex, called MED19, promotes growth of prostate cancer cells under low androgen conditions, mimicking the ability of tumors to grow under androgen deprivation in prostate cancer patients. MED19 promotes androgen-independent growth by working with a transcription factor that interacts with AR, called ELK1, to induce the expression of genes regulated by AR that promote prostate cancer growth. This study provides important insight into how prostate cancer cells can maintain growth under androgen deprivation through MED19.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e55790 ◽  
Author(s):  
Lei Yan ◽  
Zhaoquan Xing ◽  
Zhaoxin Guo ◽  
Zhiqing Fang ◽  
Wei Jiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document