The transient receptor potential vanilloid-responsive 1 and 4 cation channels: role in neuronal osmosensing and renal physiology

2007 ◽  
Vol 16 (5) ◽  
pp. 451-458 ◽  
Author(s):  
David M Cohen
Pharmacology ◽  
2019 ◽  
Vol 104 (3-4) ◽  
pp. 166-172 ◽  
Author(s):  
Beatrix Pfanzagl ◽  
Roswitha Pfragner ◽  
Erika Jensen-Jarolim

Background: Sensitization of transient receptor potential (TRP) cation channels probably contributes to intestinal hypersensitivity, a hallmark of gastrointestinal disorders. Histamine acting via histamine 1 receptor (H1R) to open TRP cation channels might also be involved. Method: The enterochromaffin cell line P-STS, responsive to histamine via H1R, was used as model to study possible synergism between histamine and TRP vanilloid 4 (TRPV4) pathways. Results: The TRPV4 antagonist RN-1734, but not HC-067047, inhibited the cytoplasmic calcium response to histamine in P-STS cells. However, also pre-incubation with the TRPV4 agonist RN-1747 strongly inhibited the calcium response to histamine in P-STS as well as HeLa cells. This inhibitory effect of RN-1747 was not due to its known TRP melastatin 8 (TRPM8) antagonism, as the TRPM8 antagonist RQ-00203078 showed no significant effect on the histamine-induced calcium response of P-STS or HeLa cells. Conclusion: The TRPV4 agonist RN-1747, and possibly also the structurally similar TRPV4 antagonist RN-1734, should be used with caution because of yet unidentified interference with histamine signaling via H1R.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 165
Author(s):  
Trine L. Toft-Bertelsen ◽  
Nanna MacAulay

The transient receptor potential vanilloid 4 channel (TRPV4) belongs to the mammalian TRP superfamily of cation channels. TRPV4 is ubiquitously expressed, activated by a disparate array of stimuli, interacts with a multitude of proteins, and is modulated by a range of post-translational modifications, the majority of which we are only just beginning to understand. Not surprisingly, a great number of physiological roles have emerged for TRPV4, as have various disease states that are attributable to the absence, or abnormal functioning, of this ion channel. This review will highlight structural features of TRPV4, endogenous and exogenous activators of the channel, and discuss the reported roles of TRPV4 in health and disease.


Sign in / Sign up

Export Citation Format

Share Document