Cholesterol precursors

2014 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Andrew J. Brown ◽  
Elina Ikonen ◽  
Vesa M. Olkkonen
2017 ◽  
Vol 24 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Jo Mailleux ◽  
Tim Vanmierlo ◽  
Jeroen FJ Bogie ◽  
Elien Wouters ◽  
Dieter Lütjohann ◽  
...  

Objective: We sought to determine the liver X receptor (LXR) ligands present in human macrophages after myelin phagocytosis and whether LXRs are activated in multiple sclerosis (MS) lesions. Methods: We used real-time quantitative polymerase chain reaction (PCR) and immunohistochemistry to determine expression of LXRs and their response genes in human phagocytes after myelin phagocytosis and in active MS lesions. We used gas chromatographic/mass spectrometric analysis to determine LXR-activating oxysterols and cholesterol precursors present and formed in myelin and myelin-incubated cells, respectively. Results: Myelin induced LXR response genes ABCA1 and ABCG1 in human monocyte-derived macrophages. In active MS lesions, we found that both gene expression and protein levels of ABCA1 and apolipoprotein E ( APOE) are upregulated in foamy phagocytes. Moreover, we found that the LXR ligand 27-hydroxycholesterol (27OHC) is significantly increased in human monocyte-derived macrophages after myelin uptake. Conclusion: LXR response genes are upregulated in phagocytes present in active MS lesions, indicating that LXRs are activated in actively demyelinating phagocytes. In addition, we have shown that myelin contains LXR ligands and that 27OHC is generated in human monocyte-derived macrophages after myelin processing. This suggests that LXRs in phagocytes in active MS lesions are activated at least partially by (oxy)sterols present in myelin and the generation thereof during myelin processing.


2020 ◽  
Author(s):  
Carian Jägers ◽  
Henk Roelink

AbstractBirth defects due to congenital errors in enzymes involved cholesterol synthesis like Smith-Lemli-Opitz syndrome (SLOS) and Lathosterolosis cause an accumulation of cholesterol precursors and a deficit in cholesterol. The phenotype of both SLOS and Lathosterolosis have similarities to syndromes associated with abnormal Sonic hedgehog (Shh) signaling, consistent with the notion that impaired cholesterol signaling can cause reduced Shh signaling. Two multipass membrane proteins play central roles in Shh signal transduction, the putative Resistance, Nodulation and Division (RND) antiporters Ptch1 and Ptch2, and the G-protein coupled receptor Smoothened (Smo). Sterols have been suggested as cargo for Ptch1, while Smo activity can affected both positively and negatively by steroidal molecules. We demonstrate that mESCs mutant for 7-dehydroxycholesterol reductase (7dhcr) or sterol-C5-desaturase (sc5d) reduce the Hh response in nearby wildtype cells when grown in mosaic organoids. This non-cell autonomous inhibitory activity of the mutant cells required the presence of both Ptch1 and Ptch2. These observations support a model in which late cholesterol precursors that accumulate in cells lacking 7DHCR are the cargo for Ptch1 and Ptch2 activity that mediates the non-cell autonomous inhibition of Smo.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 885
Author(s):  
Antonina Germano ◽  
Daniela Rossin ◽  
Valerio Leoni ◽  
Noemi Iaia ◽  
Laura Saba ◽  
...  

Adrenocortical carcinoma (ACC) is a rare cancer with poor prognosis. Mitotane, the standard treatment for ACC, impairs adrenocortical steroid biosynthesis and cholesterol metabolism. In the H295R cell line, a standard ACC in vitro model, mitotane was previously reported to enhance the production of some oxysterols. To verify the possible mechanistic involvement of oxysterols in the anti-ACC effect of mitotane, a gas chromatography mass spectrometry (GC-MS) profiling of oxysterols and the main cholesterol precursors was carried out in H295R cells. Among the oxysterols detected in mitotane-treated cells, 27OHC was markedly produced, as well as lanosterol and lathosterol cholesterol precursors. In this cell model, mitotane was confirmed to affect mitochondrial transmembrane potential and induce apoptosis. Such cytotoxic effects were perfectly matched by H295R cell treatment with a single identical micromolar amount of 27OHC. The mitotane-dependent strong increase in 27OHC was confirmed in vivo, in the plasma of ACC patients under treatment with the drug. Moreover, lanosterol, lathosterol, desmosterol and, to a minor extent, 24-hydroxycholesterol and 25-hydroxycholesterol plasma levels were significantly increased in those patients. The cytotoxic effect of mitotane on ACC cells may be partly related to the increased intracellular level of 27OHC induced by the drug itself.


2019 ◽  
Vol 8 (2) ◽  
pp. 161-169 ◽  
Author(s):  
Anna C. Pfalzer ◽  
Phillip A. Wages ◽  
Ned A. Porter ◽  
Aaron B. Bowman

Gut ◽  
1988 ◽  
Vol 29 (2) ◽  
pp. 188-195 ◽  
Author(s):  
M A Farkkila ◽  
R S Tilvis ◽  
T A Miettinen

2003 ◽  
Vol 347 (3) ◽  
pp. 159-162 ◽  
Author(s):  
C.E Teunissen ◽  
C.D Dijkstra ◽  
C.H Polman ◽  
E.L.J Hoogervorst ◽  
K von Bergmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document