Pediatric immune deficiencies

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Corina Gonzalez
Keyword(s):  
2018 ◽  
pp. 21-25
Author(s):  
M. Kinash ◽  
◽  
O. Boyarchuk ◽  
O. Levandovich-Ushinskaya ◽  
N. Haliyash ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 549
Author(s):  
Laura Garcia-Perez ◽  
Anita Ordas ◽  
Kirsten Canté-Barrett ◽  
Pauline Meij ◽  
Karin Pike-Overzet ◽  
...  

Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).


2020 ◽  
Vol 26 (3) ◽  
pp. S214-S215
Author(s):  
Sharat Chandra ◽  
Shanmuganathan Chandrakasan ◽  
Jack J. Bleesing ◽  
Michael B. Jordan ◽  
Ashish Kumar ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4878-4886 ◽  
Author(s):  
Joyce E. Ohm ◽  
Dmitry I. Gabrilovich ◽  
Gregory D. Sempowski ◽  
Ekaterina Kisseleva ◽  
Kelly S. Parman ◽  
...  

AbstractT-cell defects and premature thymic atrophy occur in cancer patients and tumor-bearing animals. We demonstrate that exposure of mice to recombinant vascular endothelial growth factor (VEGF) at concentrations similar to those observed in advanced stage cancer patients reproduces this profound thymic atrophy and is highlighted by a dramatic reduction in CD4+/CD8+ thymocytes. We find that VEGF does not induce thymocyte apoptosis, but instead rapidly decreases the number of the earliest observable progenitors in the thymus. VEGF does not inhibit thymocyte development in fetal thymic organ culture, further suggesting a prethymic effect. We also demonstrate that bone marrow progenitors from animals infused with recombinant VEGF and transferred to irradiated untreated animals recolonize the thymus more efficiently than progenitors from control animals. This suggests that VEGF exposure is associated with an increased population of thymus-committed progenitors in the bone marrow. We hypothesize that pathophysiologically relevant concentrations of VEGF may block the differentiation and/or emigration of these progenitors resulting in the observed thymic atrophy. Removal of VEGF via cessation of infusion or adoptive transfer of progenitors to a congenic host induces a preferential commitment of lymphoid progenitors to the T lineage and results in a restoration of the normal composition and cellularity of the thymus. These data demonstrate that at pathophysiologic concentrations, VEGF interferes with the development of T cells from early hematopoetic progenitor cells and this may contribute to tumor-associated immune deficiencies.


Hematology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Mary C. Dinauer

Abstract Immune deficiencies resulting from inherited defects in neutrophil function have revealed important features of the innate immune response. Although sharing an increased susceptibility to bacterial and fungal infections, these disorders each have distinctive features in their clinical manifestations and characteristic microbial pathogens. This review provides an update on several genetic disorders with impaired neutrophil function, their pathogenesis, and treatment strategies. These include chronic granulomatous disease, which results from inactivating mutations in the superoxide-generating nicotinamide dinucleotide phosphate oxidase. Superoxide-derived oxidants play an important role in the control of certain bacterial and fungal species, and also contribute to the regulation of inflammation. Also briefly summarized are updates on leukocyte adhesion deficiency, including the severe periodontal disease characteristic of this disorder, and a new immune deficiency associated with defects in caspase recruitment domain–containing protein 9, an adaptor protein that regulates signaling in neutrophils and other myeloid cells, leading to invasive fungal disease.


Sign in / Sign up

Export Citation Format

Share Document