Pyruvate and glutamine Define the Effects of Cholecystokinin and Ethanol on Mitochondrial Oxidation, Necrosis, and Morphology of Rat Pancreatic Acini

Pancreas ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Bohdan O. Manko ◽  
Olha O. Bilonoha ◽  
Dariia M. Voloshyn ◽  
Anastasiia M. Zub ◽  
Iryna I. Ivasechko ◽  
...  
1981 ◽  
Vol 240 (2) ◽  
pp. G122-G129
Author(s):  
B. C. Ponnappa ◽  
R. L. Dormer ◽  
J. A. Williams

The uptake of 45Ca2+ was studied in microsomes prepared from isolated mouse pancreatic acini. These microsomes accumulated 45Ca2+ in the presence of ATP; uptake was potentiated by addition of oxalate. Sequestered microsomal 45Ca2+ was only gradually removed by ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) but was readily released by the divalent cation ionophore A23187. Inhibitors of mitochondrial oxidation and mitochondrial calcium transport had little effect on microsomal 45Ca2+ uptake. A separate subcellular fraction enriched in plasma membranes took up 45Ca2+ poorly compared with the microsomal fraction. Half-maximal 45Ca2+ uptake by the microsomal fraction was observed at a free Ca2+ concentration of 1.1 microM. 45Ca2+ uptake was dependent on Mg-ATP and showed a pH optimum at 6.8-7.0. Subfractionation of the total microsomes into "heavy" and "light" microsomal fractions indicated higher 45Ca2+ uptake activity associated with the heavy fraction. A Ca2+-activated, Mg2+-dependent ATPase was demonstrated in this fraction. Stimulation of pancreatic acini with the cholecystokinin analogue caerulein prior to homogenization increased the subsequent rate of 45Ca2+ uptake by the microsomal fraction.


Author(s):  
W. A. Shannon ◽  
M. A. Matlib

Numerous studies have dealt with the cytochemical localization of cytochrome oxidase via cytochrome c. More recent studies have dealt with indicating initial foci of this reaction by altering incubation pH (1) or postosmication procedure (2,3). The following study is an attempt to locate such foci by altering membrane permeability. It is thought that such alterations within the limits of maintaining morphological integrity of the membranes will ease the entry of exogenous substrates resulting in a much quicker oxidation and subsequently a more precise definition of the oxidative reaction.The diaminobenzidine (DAB) method of Seligman et al. (4) was used. Minced pieces of rat liver were incubated for 1 hr following toluene treatment (5,6). Experimental variations consisted of incubating fixed or unfixed tissues treated with toluene and unfixed tissues treated with toluene and subsequently fixed.


Author(s):  
W. Allen Shannon ◽  
Hannah L. Wasserkrug ◽  
andArnold M. Seligman

The synthesis of a new substrate, p-N,N-dimethylamino-β-phenethylamine (DAPA)3 (Fig. 1) (1,2), and the testing of it as a possible substrate for tissue amine oxidase activity have resulted in the ultracytochemical localization of enzyme oxidase activity referred to as DAPA oxidase (DAPAO). DAPA was designed with the goal of providing an amine that would yield on oxidation a stronger reducing aldehyde than does tryptamine in the histochemical demonstration of monoamine oxidase (MAO) with tetrazolium salts.Ultracytochemical preparations of guinea pig heart, liver and kidney and rat heart and liver were studied. Guinea pig kidney, known to exhibit high levels of MAO, appeared the most reactive of the tissues studied. DAPAO reaction product appears primarily in mitochondrial outer compartments and cristae (Figs. 2-4). Reaction product is also localized in endoplasmic reticulum, cytoplasmic vacuoles and nuclear envelopes (Figs. 2 and 3) and in the sarcoplasmic reticulum of heart.


Diabetes ◽  
1983 ◽  
Vol 32 (12) ◽  
pp. 1102-1109
Author(s):  
Y. Iwamoto ◽  
E. Roach ◽  
A. Bailey ◽  
J. A. Williams ◽  
I. D. Goldfine

1981 ◽  
Vol 240 (2) ◽  
pp. G130-G140
Author(s):  
R. L. Dormer ◽  
J. A. Williams

In a prior study, we demonstrated that pancreatic secretagogues increased both the uptake into and washout of 45Ca2+ from isolated mouse pancreatic acini. The net result of these processes was an initial fall in total acinar cell Ca2+ content. In the present study, we have employed subcellular fractionation of acini under conditions that minimized posthomogenization redistribution of Ca2+ in order to localize those organelles involved in intracellular Ca2+ fluxes. Homogenization and differential centrifugation of acini, preloaded with 45Ca2+ and subjected to a period of washout, showed that carbachol induced an increased loss of 45Ca2+ from all fractions isolated. The high-speed microsomal fraction lost 45Ca2+ to a greater extent than did whole acini; measurement of total Ca2+ by atomic absorption spectrometry showed a net loss of Ca2+ from this fraction. Purification of the lower-speed fractions indicated that carbachol increased 45Ca2+ exchange with both zymogen granules and mitochondria, but net Ca2+ levels in these organelles were unchanged. It was concluded that stimulation of pancreatic acini by carbachol results in the release of calcium from a microsomal compartment leading to a rise in cytoplasmic Ca2+, increased exchange with granule and mitochondrial Ca2+, and increased efflux of Ca2+ from the cell.


2007 ◽  
Vol 293 (4) ◽  
pp. E986-E1001 ◽  
Author(s):  
Robert C. Noland ◽  
Tracey L. Woodlief ◽  
Brian R. Whitfield ◽  
Steven M. Manning ◽  
Jasper R. Evans ◽  
...  

Peroxisomal oxidation yields metabolites that are more efficiently utilized by mitochondria. This is of potential clinical importance because reduced fatty acid oxidation is suspected to promote excess lipid accumulation in obesity-associated insulin resistance. Our purpose was to assess peroxisomal contributions to mitochondrial oxidation in mixed gastrocnemius (MG), liver, and left ventricle (LV) homogenates from lean and fatty ( fa/fa) Zucker rats. Results indicate that complete mitochondrial oxidation (CO2production) using various lipid substrates was increased approximately twofold in MG, unaltered in LV, and diminished ∼50% in liver of fa/fa rats. In isolated mitochondria, malonyl-CoA inhibited CO2production from palmitate 78%, whereas adding isolated peroxisomes reduced inhibition to 21%. These data demonstrate that peroxisomal products may enter mitochondria independently of CPT I, thus providing a route to maintain lipid disposal under conditions where malonyl-CoA levels are elevated, such as in insulin-resistant tissues. Peroxisomal metabolism of lignoceric acid in fa/fa rats was elevated in both liver and MG (LV unaltered), but peroxisomal product distribution varied. A threefold elevation in incomplete oxidation was solely responsible for increased hepatic peroxisomal oxidation (CO2unaltered). Alternatively, only CO2was detected in MG, indicating that peroxisomal products were exclusively partitioned to mitochondria for complete lipid disposal. These data suggest tissue-specific destinations for peroxisome-derived products and emphasize a potential role for peroxisomes in skeletal muscle lipid metabolism in the obese, insulin-resistant state.


Author(s):  
Mariana Fernandez-Caggiano ◽  
Philip Eaton

AbstractThe mitochondrial pyruvate carrier (MPC) is the entry point for the glycolytic end-product pyruvate to the mitochondria. MPC activity, which is controlled by its abundance and post-translational regulation, determines whether pyruvate is oxidised in the mitochondria or metabolised in the cytosol. MPC serves as a crucial metabolic branch point that determines the fate of pyruvate in the cell, enabling metabolic adaptations during health, such as exercise, or as a result of disease. Decreased MPC expression in several cancers limits the mitochondrial oxidation of pyruvate and contributes to lactate accumulation in the cytosol, highlighting its role as a contributing, causal mediator of the Warburg effect. Pyruvate is handled similarly in the failing heart where a large proportion of it is reduced to lactate in the cytosol instead of being fully oxidised in the mitochondria. Several recent studies have found that the MPC abundance was also reduced in failing human and mouse hearts that were characterised by maladaptive hypertrophic growth, emulating the anabolic scenario observed in some cancer cells. In this review we discuss the evidence implicating the MPC as an important, perhaps causal, mediator of heart failure progression.


Sign in / Sign up

Export Citation Format

Share Document