scholarly journals Phosphorylated Smad 2/3 Colocalizes With Phospho-tau Inclusions in Pick Disease, Progressive Supranuclear Palsy, and Corticobasal Degeneration but Not With α-Synuclein Inclusions in Multiple System Atrophy or Dementia With Lewy Bodies

2007 ◽  
Vol 66 (11) ◽  
pp. 1019-1026 ◽  
Author(s):  
Katy A. Chalmers ◽  
Seth Love
PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243454
Author(s):  
Heide Baumann-Vogel ◽  
Hyun Hor ◽  
Rositsa Poryazova ◽  
Philipp Valko ◽  
Esther Werth ◽  
...  

This retrospective single-center polysomnography-based study was designed to assess the frequency of REM sleep behavior disorder (RBD) in consecutive patients with Parkinsonism, including Parkinson disease, dementia with Lewy bodies, multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. We observed RBD in 77% of 540 Parkinson patients, with rising frequency at higher age and regardless of sex, in >89% of 89 patients with dementia with Lewy bodies or multiple system atrophy, and in <15% of 42 patients with progressive supranuclear palsy or corticobasal degeneration. Thus, the prevalence of RBD in sporadic Parkinson disease might be higher than previously assumed, particularly in elderly patients.


Author(s):  
Tamara Kaplan ◽  
Tracey Milligan

The video in this chapter explores movement disorders, and focuses on Parkinson’s Plus and degenerative diseases. It outlines the features and pathology of dementia with lewy bodies (DLB), progressive supranuclear palsy (PSP), multiple systems atrophy (MSA) and corticobasal degeneration (CBD), as well as genetic movement disorders, Wilson’s disease, and Huntington’s disease.


2021 ◽  
pp. 680-688
Author(s):  
Rodolfo Savica ◽  
Pierpaolo Turcano ◽  
Bradley F. Boeve

The differential diagnosis for dementia is wide. A slowly progressive course for parkinsonism suggests a degenerative cause and helps to narrow the differential diagnosis considerably. In patients with dementia in combination with parkinsonism (often collectively termed the parkinsonism-related dementias), the 4 most common neurodegenerative entities are 1) Lewy body dementias (which include dementia with Lewy bodies and Parkinson disease with dementia); 2) corticobasal syndrome or corticobasal degeneration; 3) Richardson syndrome or progressive supranuclear palsy; and 4) frontotemporal dementia with parkinsonism.


2021 ◽  
Vol 11 (1) ◽  
pp. 119
Author(s):  
Vasilios C. Constantinides ◽  
Nour K. Majbour ◽  
George P. Paraskevas ◽  
Ilham Abdi ◽  
Bared Safieh-Garabedian ◽  
...  

Total CSF α-synuclein (t-α-syn), phosphorylated α-syn (pS129-α-syn) and α-syn oligomers (o-α-syn) have been studied as candidate biomarkers for synucleinopathies, with suboptimal specificity and sensitivity in the differentiation from healthy controls. Studies of α-syn species in patients with other underlying pathologies are lacking. The aim of this study was to investigate possible alterations in CSF α-syn species in a cohort of patients with diverse underlying pathologies. A total of 135 patients were included, comprising Parkinson’s disease (PD; n = 13), multiple system atrophy (MSA; n = 9), progressive supranuclear palsy (PSP; n = 13), corticobasal degeneration (CBD; n = 9), Alzheimer’s disease (AD; n = 51), frontotemporal degeneration (FTD; n = 26) and vascular dementia patients (VD; n = 14). PD patients exhibited higher pS129-α-syn/α-syn ratios compared to FTD (p = 0.045), after exclusion of samples with CSF blood contamination. When comparing movement disorders (i.e., MSA vs. PD vs. PSP vs. CBD), MSA patients had lower α-syn levels compared to CBD (p = 0.024). Patients with a synucleinopathy (PD and MSA) exhibited lower t-α-syn levels (p = 0.002; cut-off value: ≤865 pg/mL; sensitivity: 95%, specificity: 69%) and higher pS129-/t-α-syn ratios (p = 0.020; cut-off value: ≥0.122; sensitivity: 71%, specificity: 77%) compared to patients with tauopathies (PSP and CBD). There are no significant α-syn species alterations in non-synucleinopathies.


Author(s):  
Manuel Schweighauser ◽  
Yang Shi ◽  
Airi Tarutani ◽  
Fuyuki Kametani ◽  
Alexey G. Murzin ◽  
...  

Synucleinopathies are human neurodegenerative diseases that include multiple system atrophy (MSA), Parkinson’s disease, Parkinson’s disease dementia (PDD) and dementia with Lewy bodies (DLB) (1). Existing treatments are at best symptomatic. These diseases are characterised by the presence in brain cells of filamentous inclusions of α-synuclein, the formation of which is believed to cause disease (2, 3). However, the structures of α-synuclein filaments from human brain are not known. Here we show, using electron cryo-microscopy, that α-synuclein inclusions from MSA are made of two types of filaments, each of which consists of two different protofilaments. Non-proteinaceous molecules are present at the protofilament interfaces. By two-dimensional class averaging, we show that α-synuclein filaments from the brains of patients with MSA and DLB are different, suggesting that distinct conformers (or strains) characterise synucleinopathies. As was the case of tau assemblies (4–9), the structures of α-synuclein filaments extracted from the brains of individuals with MSA differ from those formed in vitro using recombinant proteins, with implications for understanding the mechanisms of aggregate propagation and neurodegeneration in human brain. These findings have diagnostic and potential therapeutic relevance, especially in view of the unmet clinical need to be able to image filamentous α-synuclein inclusions in human brain.


Author(s):  
Johannes Attems ◽  
Kurt A. Jellinger

This chapter describes the main neuropathological features of the most common age-associated neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and dementia with Lewy bodies, as well as other less frequent ones such as multiple system atrophy, Pick’s disease, corticobasal degeneration, progressive supranuclear palsy, argyrophilic grain disease, neurofibrillary tangle-dominant dementia, frontotemporal lobar degeneration with TDP-43 pathology, and Huntington’s disease. Likewise, cerebral amyloid angiopathy, hippocampal sclerosis, vascular dementia, and prion diseases are described. A main aim of this chapter is to assist the reader in interpreting neuropathological reports; hence criteria for the neuropathological classifications of the major diseases are provided. One section covers general considerations on neurodegeneration, and basic pathophysiological mechanisms of tau, amyloid-β‎, α‎-synuclein, TDP-43, and prions are briefly described in the sections on the respective diseases. Finally, one section is dedicated to cerebral multimorbidity, and a view on currently emerging neuropathological methods is given.


Sign in / Sign up

Export Citation Format

Share Document