“Physiological Optics and Vision Science”

2012 ◽  
Vol 89 (7) ◽  
pp. 953 ◽  
Author(s):  
Anthony J. Adams
2020 ◽  
Vol 2020 (1) ◽  
pp. 105-108
Author(s):  
Ali Alsam

Vision is the science that informs us about the biological and evolutionary algorithms that our eyes, opticnerves and brains have chosen over time to see. This article is an attempt to solve the problem of colour to grey conversion, by borrowing ideas from vision science. We introduce an algorithm that measures contrast along the opponent colour directions and use the results to combine a three dimensional colour space into a grey. The results indicate that the proposed algorithm competes with the state of art algorithms.


2019 ◽  
Vol 51 (8) ◽  
pp. 1178-1191 ◽  
Author(s):  
SM Berman ◽  
RD Clear

Over the past decade, there has been a growing interest in lighting research on the effects of the recently discovered melanopsin receptor (also referred to as the intrinsically photosensitive retinal ganglion cell) and its impacts on health and vision. Presently, there is not a generally accepted metrology for dealing with the spectral response of the melanopsin receptor as applied to both lighting and vision research. A proposition to handle this issue from a vision science perspective has been presented in 2014 in the journal Trends in Neurosciences and from a more lighting perspective in 2017 in Lighting Research and Technology. These propositions are complex, and do not retain the CIE standard definition of a lumen. In this paper, we propose an approach based on effective watts and melanopic/photopic ratios that is both simpler and more closely aligned with CIE standard unit definitions. In addition, we include some practical examples of how such ratios are accessible now, and can be used for both lighting and vision research as well as applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Laura Campello ◽  
Nivedita Singh ◽  
Jayshree Advani ◽  
Anupam K. Mondal ◽  
Ximena Corso-Diaz ◽  
...  

Multifaceted and divergent manifestations across tissues and cell types have curtailed advances in deciphering the cellular events that accompany advanced age and contribute to morbidities and mortalities. Increase in human lifespan during the past century has heightened awareness of the need to prevent age-associated frailty of neuronal and sensory systems to allow a healthy and productive life. In this review, we discuss molecular and physiological attributes of aging of the retina, with a goal of understanding age-related impairment of visual function. We highlight the epigenome–metabolism nexus and proteostasis as key contributors to retinal aging and discuss lifestyle changes as potential modulators of retinal function. Finally, we deliberate promising intervention strategies for promoting healthy aging of the retina for improved vision. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document