Effects of Ankle-Foot Orthoses on acceleration and energy cost of walking in children and adolescents with cerebral palsy

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Tobias Goihl ◽  
Espen Alexander F. Ihlen ◽  
Ellen Marie Bardal ◽  
Karin Roeleveld ◽  
Astrid Ustad ◽  
...  
2010 ◽  
Vol 34 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Daan J. J. Bregman ◽  
Vincent De Groot ◽  
Peter Van Diggele ◽  
Hubert Meulman ◽  
Han Houdijk ◽  
...  

The aim of this study was to assess the functional effects and mechanical contribution of Ankle Foot Orthoses (AFO) prescribed to overcome drop-foot gait. We hypothesized that poor functional effects of the AFO relate to insufficient mechanical contribution of the AFO during the swing phase, or unwanted constraining of the ankle during the stance phase. In seven patients with Stroke or Multiple Sclerosis, we determined changes in energy cost of walking resulting from wearing an AFO, as a measure of the functional effects. In addition, an instrumented gait analysis was performed, and the mechanical AFO properties were measured, to calculate the mechanical contribution of the AFO. The AFO was sufficiently stiff to effectively support the foot in swing, without hampering the ankle during stance. For the whole group, there was a significant improvement in walking speed and energy cost (12%). However, the AFO had no functional benefit in terms of a reduced energy cost of walking for three patients, who coherently demonstrated no pathological plantar flexion during swing without their AFO. We conclude that functional benefit from the AFO was only found when the mechanical AFO characteristics met the need to support the patients‘ mechanical deficiencies.


2012 ◽  
Vol 35 (1) ◽  
pp. 148-153 ◽  
Author(s):  
D.J.J. Bregman ◽  
J. Harlaar ◽  
C.G.M. Meskers ◽  
V. de Groot

Author(s):  
Niels F. J. Waterval ◽  
Merel-Anne Brehm ◽  
Jaap Harlaar ◽  
Frans Nollet

Abstract Background In people with calf muscle weakness, the stiffness of dorsal leaf spring ankle–foot orthoses (DLS-AFO) needs to be individualized to maximize its effect on walking. Orthotic suppliers may recommend a certain stiffness based on body weight and activity level. However, it is unknown whether these recommendations are sufficient to yield the optimal stiffness for the individual. Therefore, we assessed whether the stiffness following the supplier’s recommendation of the Carbon Ankle7 (CA7) dorsal leaf matched the experimentally optimized AFO stiffness. Methods Thirty-four persons with calf muscle weakness were included and provided a new DLS-AFO of which the stiffness could be varied by changing the CA7® (Ottobock, Duderstadt, Germany) dorsal leaf. For five different stiffness levels, including the supplier recommended stiffness, gait biomechanics, walking energy cost and speed were assessed. Based on these measures, the individual experimentally optimal AFO stiffness was selected. Results In only 8 of 34 (23%) participants, the supplier recommended stiffness matched the experimentally optimized AFO stiffness, the latter being on average 1.2 ± 1.3 Nm/degree more flexible. The DLS-AFO with an experimentally optimized stiffness resulted in a significantly lower walking energy cost (− 0.21 ± 0.26 J/kg/m, p < 0.001) and a higher speed (+ 0.02 m/s, p = 0.003). Additionally, a larger ankle range of motion (+ 1.3 ± 0.3 degrees, p < 0.001) and higher ankle power (+ 0.16 ± 0.04 W/kg, p < 0.001) were found with the experimentally optimized stiffness compared to the supplier recommended stiffness. Conclusions In people with calf muscle weakness, current supplier’s recommendations for the CA7 stiffness level result in the provision of DLS-AFOs that are too stiff and only achieve 80% of the reduction in energy cost achieved with an individual optimized stiffness. It is recommended to experimentally optimize the CA7 stiffness in people with calf muscle weakness in order to maximize treatment outcomes. Trial registration Nederlands Trial Register 5170. Registration date: May 7th 2015. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=5170.


2002 ◽  
Vol 24 (7) ◽  
pp. 345-347 ◽  
Author(s):  
Erbil Dursun ◽  
Nigar Dursun ◽  
Duygu Alican

Children ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 903
Author(s):  
Diogo Ricardo ◽  
Maria Raposo ◽  
Eduardo Cruz ◽  
Raul Oliveira ◽  
Filomena Carnide ◽  
...  

Background: Cerebral palsy (CP) is the most common cause of motor disability in children and can cause severe gait deviations. The sagittal gait patterns classification for children with bilateral CP is an important guideline for the planning of the rehabilitation process. Ankle foot orthoses should improve the biomechanical parameters of pathological gait in the sagittal plane. Methods: A systematic search of the literature was conducted to identify randomized controlled trials (RCT) and controlled clinical trials (CCT) which measured the effect of ankle foot orthoses (AFO) on the gait of children with spastic bilateral CP, with kinetic, kinematic, and functional outcomes. Five databases (Pubmed, Scopus, ISI Web of SCIENCE, SciELO, and Cochrane Library) were searched before February 2020. The PEDro Score was used to assess the methodological quality of the selected studies and alignment with the Cochrane approach was also reviewed. Prospero registration number: CRD42018102670. Results: We included 10 studies considering a total of 285 children with spastic bilateral CP. None of the studies had a PEDro score below 4/10, including five RCTs. We identified five different types of AFO (solid; dynamic; hinged; ground reaction; posterior leaf spring) used across all studies. Only two studies referred to a classification for gait patterns. Across the different outcomes, significant differences were found in walking speed, stride length and cadence, range of motion, ground force reaction and joint moments, as well as functional scores, while wearing AFO. Conclusions: Overall, the use of AFO in children with spastic bilateral CP minimizes the impact of pathological gait, consistently improving some kinematic, kinetic, and spatial-temporal parameters, and making their gait closer to that of typically developing children. Creating a standardized protocol for future studies involving AFO would facilitate the reporting of new scientific data and help clinicians use their clinical reasoning skills to recommend the best AFO for their patients.


2018 ◽  
Vol 43 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Ingrid Skaaret ◽  
Harald Steen ◽  
Terje Terjesen ◽  
Inger Holm

Background: Different types of ankle-foot orthoses are commonly used following lower limb surgery in children with bilateral spastic cerebral palsy. After three-dimensional gait analysis 1 year postoperatively, many children are recommended continued use of ankle-foot orthoses. Objectives: Our aims were to quantify the impact of ankle-foot orthoses on gait 1 year postoperatively and evaluate predictors for clinically important improvement. Study design: Prospective cohort study. Methods: A total of 34 ambulating children with bilateral cerebral palsy, with mean age 11 years (range 6–17), comprising 12 girls and 22 boys, were measured with three-dimensional gait analysis preoperatively (barefoot) and 1 year postoperatively (barefoot and with ankle-foot orthoses). Outcome was evaluated using gait profile score, key kinematic, kinetic and temporal–spatial variables in paired sample comparisons. Logistic regression was used to evaluate predictors for clinically important improvement with orthoses (⩾1.6° change in gait profile score). Results: Walking barefoot 1 year postoperatively, major improvements were seen in gait profile score and key variables. With ankle-foot orthoses, there were significantly improved step length and velocity, additional moderate reduction/improvement in gait profile score and knee moments and decreased stance ankle dorsiflexion compared to barefoot. Children using ground reaction ankle-foot orthoses ( n = 14) decreased stance knee flexion from 13.9° walking barefoot to 8.2° with orthoses. High gait profile score and more gait dysfunction preoperatively were significant predictors of clinically important improvement walking with orthoses. Conclusion: The results indicate improved gait function walking with ankle-foot orthoses versus barefoot 1 year after lower limb surgery. Stronger impact of ankle-foot orthoses was found in children with more pronounced gait dysfunction preoperatively. Clinical relevance The 1-year postoperative three-dimensional gait analysis is a useful method to assess treatment outcome after lower limb surgery in children with bilateral cerebral palsy and could also guide clinicians whether further treatment with ankle-foot orthoses is indicated, using clinically important differences as thresholds to evaluate their impact on gait.


Sign in / Sign up

Export Citation Format

Share Document