scholarly journals Effects of 7,8-dihydroxycoumarin on the myelin morphological changes and PSD-95 protein expression in Balb/c mice after sciatic nerve injury

Neuroreport ◽  
2021 ◽  
Vol 32 (14) ◽  
pp. 1198-1205
Author(s):  
Huiyan Sun ◽  
Qiang Li ◽  
Limin Zhang ◽  
Zhiyong Su ◽  
Jinlong Li ◽  
...  
2019 ◽  
Author(s):  
Jian Cao ◽  
Limin Zhang ◽  
Jinlong Li ◽  
Hui Leng

AbstractTo investigate the effects of 7,8-dihydroxycoumarin on the myelin morphological changes and PSD-95 protein expression in mice with sciatic nerve injury, and to explore the relationship between PSD-95 protein and myelin regeneration after nerve myelin injury. 127 male adult Balb/c mice were selected and randomly divided into high, medium and low 7,8-dihydroxycoumarin dose groups and blank control group. Anastomosis was then carried out for the amputated right sciatic nerve, and intraperitoneal injection of 7,8-dihydroxycoumarin was applied postoperatively. At weeks 1, 2, 4 and 8 after surgery, nervous tissues from the injury side were taken for immunohistochemical Luxol Fast Blue (LFB) staining, so as to observe the morphological changes of the locally injured nerve myelin. Meanwhile, PSD-95 mRNA and protein expression were determined using real-time PCR and western blotting. The nerve myelin recovery in injury side of mice at all time points showed a definite dose-effect relationship with the dose of 7,8-dihydroxycoumarin. Moreover, 7,8-dihydroxycoumarin could inhibit the PSD-95 mRNA level and protein expression. At the same time, there was a dose-effect of the inhibition. 7,8-dihydroxycoumarin can affect nerve recovery in mice with sciatic nerve injury, which shows a definite dose-effect relationship with its dose. Besides, PSD-95 protein expression can suppress the regeneration of the injured nerve myelin.


2020 ◽  
Vol 715 ◽  
pp. 134547
Author(s):  
Cao Jian ◽  
Limin Zhang ◽  
Li Jinlong ◽  
Tao Bo ◽  
Zhongxing Liu

2014 ◽  
Vol 50 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Meiyuan Li ◽  
Pingan Zhang ◽  
Weimin Guo ◽  
Huaiqin Li ◽  
Xiaosong Gu ◽  
...  

2020 ◽  
Vol 14 (4) ◽  
pp. 263-269
Author(s):  
A. A. Starinets ◽  
E. L. Egorova ◽  
A. A. Tyrtyshnaia ◽  
I. V. Dyuisen ◽  
A. N. Baryshev ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Diego Noé Rodríguez-Sánchez ◽  
Giovana Boff Araujo Pinto ◽  
Luciana Politti Cartarozzi ◽  
Alexandre Leite Rodrigues de Oliveira ◽  
Ana Livia Carvalho Bovolato ◽  
...  

Abstract Background Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. Methods 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. Results The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. Conclusions 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.


2021 ◽  
Vol 145 ◽  
pp. 104984
Author(s):  
Christopher R. Richmond ◽  
Laurel L. Ballantyne ◽  
A. Elizabeth de Guzman ◽  
Brian J. Nieman ◽  
Colin D. Funk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document