scholarly journals Norway rats reciprocate help according to the quality of help they received

2015 ◽  
Vol 11 (2) ◽  
pp. 20140959 ◽  
Author(s):  
Vassilissa Dolivo ◽  
Michael Taborsky

Direct reciprocity, according to the decision rule ‘help someone who has helped you before’, reflects cooperation based on the principle of postponed benefits. A predominant factor influencing Homo sapiens ' motivation to reciprocate is an individ­ual's perceived benefit resulting from the value of received help. But hitherto it has been unclear whether other species also base their decision to cooperate on the quality of received help. Previous experiments have demonstrated that Norway rats, Rattus norvegicus , cooperate using direct reciprocity decision rules in a variant of the iterated Prisoner's Dilemma, where they preferentially help cooperators instead of defectors. But, as the quality of obtained benefits has not been varied, it is yet unclear whether rats use the value of received help as decision criterion to pay help back. Here, we tested whether rats distinguish between different cooperators depending purely on the quality of their help. Our data show that a rat's propensity to reciprocate help is, indeed, adjusted to the perceived quality of the partner's previous help. When cooperating with two conspecific partners expending the same effort, rats apparently rely on obtained benefit to adjust their level of returned help.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nina Kettler ◽  
Manon K. Schweinfurth ◽  
Michael Taborsky

AbstractDirect reciprocity, where individuals apply the decision rule ‘help someone who has helped you’, is believed to be rare in non-human animals due to its high cognitive demands. Especially if previous encounters with several partners need to be correctly remembered, animals might either stop reciprocating favours previously received from an individual, or switch to the simpler generalized reciprocity mechanism. Here we tested the decision rules Norway rats apply when interacting with multiple partners before being able to return received help. In a sequential prisoner’s dilemma situation, focal subjects encountered four different partners that were either helpful or not, on four consecutive days. On the fifth day, the focal subject was paired with one of the previous four partners and given the opportunity to provide it with food. The focal rats returned received help by closely matching the quantity of help their partner had previously provided, independently of the time delay between received and given help, and independently of the ultimate interaction preceding the test. This shows that direct reciprocity is not limited to dyadic situations in Norway rats, suggesting that cognitive demands involved in applying the required decision rules can be met by non-human animals even when they interact with multiple partners differing in helping propensity.


Author(s):  
Timo Hoffmann ◽  
Sander Renes

AbstractCorporate boards, experts panels, parliaments, cabinets, and even nations all take important decisions as a group. Selecting an efficient decision rule to aggregate individual opinions is paramount to the decision quality of these groups. In our experiment we measure revealed preferences over and efficiency of several important decision rules. Our results show that: (1) the efficiency of the theoretically optimal rule is not as robust as simple majority voting, and efficiency rankings in the lab can differ from theory; (2) participation constraints often hinder implementation of more efficient mechanisms; (3) these constraints are relaxed if the less efficient mechanism is risky; (4) participation preferences appear to be driven by realized rather than theoretic payoffs of the decision rules. These findings highlight the difficulty of relying on theory alone to predict what mechanism is better and acceptable to the participants in practice.


Author(s):  
Michael Laver ◽  
Ernest Sergenti

This chapter extends the survival-of-the-fittest evolutionary environment to consider the possibility that new political parties, when they first come into existence, do not pick decision rules at random but instead choose rules that have a track record of past success. This is done by adding replicator-mutator dynamics to the model, according to which the probability that each rule is selected by a new party is an evolving but noisy function of that rule's past performance. Estimating characteristic outputs when this type of positive feedback enters the dynamic model creates new methodological challenges. The simulation results show that it is very rare for one decision rule to drive out all others over the long run. While the diversity of decision rules used by party leaders is drastically reduced with such positive feedback in the party system, and while some particular decision rule is typically prominent over a certain period of time, party systems in which party leaders use different decision rules are sustained over substantial periods.


Author(s):  
Michael Laver ◽  
Ernest Sergenti

This chapter attempts to develop more realistic and interesting models in which the set of competing parties is a completely endogenous output of the process of party competition. It also seeks to model party competition when different party leaders use different decision rules in the same setting by building on an approach pioneered in a different context by Robert Axelrod. This involves long-running computer “tournaments” that allow investigation of the performance and “robustness” of decision rules in an environment where any politician using any rule may encounter an opponent using either the same decision rule or some quite different rule. The chapter is most interested in how a decision rule performs against anything the competitive environment might throw against it, including agents using decision rules that are difficult to anticipate and/or comprehend.


Sign in / Sign up

Export Citation Format

Share Document