scholarly journals Near absence of differential gene expression in the retina of rainbow trout after exposure to a magnetic pulse: implications for magnetoreception

2018 ◽  
Vol 14 (6) ◽  
pp. 20180209 ◽  
Author(s):  
Robert R. Fitak ◽  
Lorian E. Schweikert ◽  
Benjamin R. Wheeler ◽  
David A. Ernst ◽  
Kenneth J. Lohmann ◽  
...  

The ability to perceive the Earth's magnetic field, or magnetoreception, exists in numerous animals. Although the mechanism underlying magnetoreception has not been clearly established in any species, in salmonid fish, it is hypothesized to occur by means of crystals of magnetite associated with nervous tissue such as the brain, olfactory organ or retina. In this study, rainbow trout ( Oncorhynchus mykiss ) were exposed to a brief magnetic pulse known to disrupt magnetic orientation behaviour in several animals. Changes in gene expression induced by the pulse were then examined in the retina. Analyses indicated that the pulse elicited differential expression of only a single gene, gamma-crystallin M3-like ( crygm3 ). The near absence of an effect of the magnetic pulse on gene expression in the retina stands in sharp contrast to a recent study in which 181 genes were differentially expressed in brain tissue of O. mykiss after exposure to the same pulse. Overall, our results suggest either that magnetite-based magnetoreceptors in trout are not located in the retina, or else that they are unaffected by magnetic pulses that can disrupt magnetic orientation behaviour in animals.

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Tiziano Flati ◽  
Silvia Gioiosa ◽  
Giovanni Chillemi ◽  
Andrea Mele ◽  
Alberto Oliverio ◽  
...  

AbstractStressful experiences are part of everyday life and animals have evolved physiological and behavioral responses aimed at coping with stress and maintaining homeostasis. However, repeated or intense stress can induce maladaptive reactions leading to behavioral disorders. Adaptations in the brain, mediated by changes in gene expression, have a crucial role in the stress response. Recent years have seen a tremendous increase in studies on the transcriptional effects of stress. The input raw data are freely available from public repositories and represent a wealth of information for further global and integrative retrospective analyses. We downloaded from the Sequence Read Archive 751 samples (SRA-experiments), from 18 independent BioProjects studying the effects of different stressors on the brain transcriptome in mice. We performed a massive bioinformatics re-analysis applying a single, standardized pipeline for computing differential gene expression. This data mining allowed the identification of novel candidate stress-related genes and specific signatures associated with different stress conditions. The large amount of computational results produced was systematized in the interactive “Stress Mice Portal”.


2002 ◽  
Vol 22 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Eric V. Shusta ◽  
Ruben J. Boado ◽  
Gary W. Mathern ◽  
William M. Pardridge

The microvasculature of the human brain plays an important role in the development and maintenance of the central nervous system and in the pathogenesis of brain diseases, and is the site of differential gene expression within the brain. However, human brain microvascular-specific genes may not be detected in whole-brain gene microarray because the volume of the brain microvascular endothelium is relatively small (0.1%) compared with the whole brain. Therefore, the differential gene expression within the human brain microvasculature was evaluated using suppression subtractive hybridization with RNA isolated from human brain microvessels. Gene identification was restricted to the first 71 clones that were differentially expressed at the brain microvasculature. Twenty of these were genes encoding proteins with known function that were involved in angiogenesis, neurogenesis, molecular transport, and maintenance of endothelial tight junctions or the cytoskeleton. Eighteen genes coding for proteins of an unknown function were identified, including five genes containing satellite DNA sequences. The results provide the initial outline of the genomics of the human brain microvasculature, and have implications for the identification of both targets for brain-specific drug transport and changes in microvascular gene expression in brain diseases.


2020 ◽  
Author(s):  
Shahan Mamoor

Glioblastoma is the most common brain cancer in adults and has a 15 month median survival rate (1, 2). We performed differential gene expression analysis, comparing the glioblastoma transcriptome from 17 patients to the transcriptome of 8 non-affected, “normal” brain samples using a published dataset (3). Three separate genes encoding F-box proteins (4), including FBXW7, FBXO41, and FBXL16 were differentially expressed and at significantly lower levels in the tumors of patients with glioblastoma than in the brain. Significant differential expression of FBXW7, FBXO41 and FBXL16 was also observed in glioblastomas from the REMBRANDT study (5).


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 196
Author(s):  
Valeria Maselli ◽  
Gianluca Polese ◽  
Al-Sayed Al-Soudy ◽  
Maria Buglione ◽  
Anna Di Cosmo

Octopuses are unique invertebrates, with sophisticated and flexible behaviors controlled by a high degree of brain plasticity, learning, and memory. Moreover, in Octopus vulgaris, it has been demonstrated that animals housed in an enriched environment show adult neurogenesis in specific brain areas. Firstly, we evaluated the optimal acclimatization period needed for an O. vulgaris before starting a cognitive stimulation experiment. Subsequently, we analyzed differential gene expression in specific brain areas in adult animals kept in tested (enriched environment), wild (naturally enriched environment), and control conditions (unenriched environment). We selected and sequenced three protocadherin genes (PCDHs) involved in the development and maintenance of the nervous system; three Pax genes that control cell specification and tissue differentiation; the Elav gene, an earliest marker for neural cells; and the Zic1 gene, involved in early neural formation in the brain. In this paper, we evaluated gene expression levels in O. vulgaris under different cognitive stimulations. Our data shows that Oct-PCDHs genes are upregulated in the learning and lower motor centers in the brain of both tested and wild animals (higher in the latter). Combining these results with our previous studies on O. vulgaris neurogenesis, we proposed that PCDH genes may be involved in adult neurogenesis processes, and related with their cognitive abilities.


Sign in / Sign up

Export Citation Format

Share Document