scholarly journals Can behaviour impede evolution? Persistence of singing effort after morphological song loss in crickets

2020 ◽  
Vol 16 (6) ◽  
pp. 20190931
Author(s):  
Jack G. Rayner ◽  
Will T. Schneider ◽  
Nathan W. Bailey

Evolutionary loss of sexual signals is widespread. Examining the consequences for behaviours associated with such signals can provide insight into factors promoting or inhibiting trait loss. We tested whether a behavioural component of a sexual trait, male calling effort, has been evolutionary reduced in silent populations of Hawaiian field crickets ( Teleogryllus oceanicus ) . Cricket song requires energetically costly wing movements, but ‘flatwing’ males have feminized wings that preclude song and protect against a lethal, eavesdropping parasitoid. Flatwing males express wing movement patterns associated with singing but, in contrast with normal-wing males, sustained periods of wing movement cannot confer sexual selection benefits and should be subject to strong negative selection. We developed an automated technique to quantify how long males spend expressing wing movements associated with song. We compared calling effort among populations of Hawaiian crickets with differing proportions of silent males and between male morphs. Contrary to expectation, silent populations invested as much in calling effort as non-silent populations. Additionally, flatwing and normal-wing males from the same population did not differ in calling effort. The lack of evolved behavioural adjustment following morphological change in silent Hawaiian crickets illustrates how behaviour might sometimes impede, rather than facilitate, evolution.

2019 ◽  
Vol 158 ◽  
pp. 183-191 ◽  
Author(s):  
Eliza K. Thompson ◽  
Naomi L. Cullinan ◽  
Therésa M. Jones ◽  
Gareth R. Hopkins

2020 ◽  
Vol 21 (16) ◽  
pp. 5877 ◽  
Author(s):  
Eloisa Romano ◽  
Irene Rosa ◽  
Bianca Saveria Fioretto ◽  
Elena Lucattelli ◽  
Marco Innocenti ◽  
...  

Telocytes (TCs), commonly referred to as TCs/CD34+ stromal cells, are a peculiar type of interstitial cells with distinctive morphologic traits that are supposed to exert several biological functions, including tissue homeostasis regulation, cell-to-cell signaling, immune surveillance, and reparative/regenerative effects. At present, the majority of studies investigating these cells are mainly descriptive and focus only on their morphology, with a consequent paucity of functional data. To gain relevant insight into the possible functions of TCs, in vitro analyses are clearly required, but currently, the protocols for TC isolation are only at the early stages and not fully standardized. In the present in vitro study, we describe a novel methodology for the purification of human primary skin TCs through a two-step immunomagnetic microbead-based cell separation (i.e., negative selection for CD31 followed by positive selection for CD34) capable of discriminating these cells from other connective tissue-resident cells on the basis of their different immunophenotypic features. Our experiments clearly demonstrated that the proposed method allows a selective purification of cells exhibiting the peculiar TC morphology. Isolated TCs displayed very long cytoplasmic extensions with a moniliform silhouette (telopodes) and presented an immunophenotypic profile (CD31−/CD34+/PDGFRα+/vimentin+) that unequivocally differentiates them from endothelial cells (CD31+/CD34+/PDGFRα−/vimentin+) and fibroblasts (CD31−/CD34−/PDGFRα+/vimentin+). This novel methodology for the isolation of TCs lays the groundwork for further research aimed at elucidating their functional properties and possible translational applications, especially in the field of regenerative medicine.


2020 ◽  
Author(s):  
László Bányai ◽  
Mária Trexler ◽  
Krisztina Kerekes ◽  
Orsolya Csuka ◽  
László Patthy

AbstractA major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes that are positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. In the present work we have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations. Oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.


2021 ◽  
Author(s):  
Necla Koçhan ◽  
Doğa Eskier ◽  
Aslı Suner ◽  
Gökhan Karakülah ◽  
Yavuz Oktay

AbstractSARS-CoV-2 is a betacoronavirus responsible for the COVID-19 pandemic that has affected millions of people worldwide, with no dedicated treatment or vaccine currently available. As pharmaceutical research against and the most frequently used tests for SARS-CoV-2 infection both depend on the genomic and peptide sequences of the virus for their efficacy, understanding the mutation rates and content of the virus is critical. Two key proteins for SARS-CoV-2 infection and replication are the S protein, responsible for viral entry into the cells, and RdRp, the RNA polymerase responsible for replicating the viral genome. Due to their roles in the viral cycle, these proteins are crucial for the fitness and infectiousness of the virus. Our previous findings had shown that the two most frequently observed mutations in the SARS-CoV-2 genome, 14408C>T in the RdRp coding region, and 23403A>G in the S gene, are correlated with higher mutation density over time. In this study, we further detail the selection dynamics and the mutation rates of SARS-CoV-2 genes, comparing them between isolates carrying both mutations, and isolates carrying neither. We find that the S gene and the RdRp coding region show the highest variance between the genotypes, and their selection dynamics contrast each other over time. The S gene displays higher positive selection in mutant isolates early on, and undergoes increasing negative selection over time, whereas the RdRp region in the mutant isolates shows strong negative selection throughout the pandemic.


2017 ◽  
Author(s):  
Robert A. Mathis ◽  
Ethan S. Sokol ◽  
Piyush B. Gupta

AbstractThere is widespread interest in finding therapeutic vulnerabilities by analyzing the somatic mutations in cancers. Most analyses have focused on identifying driver oncogenes mutated in patient tumors, but this approach is incapable of discovering genes essential for tumor growth yet not activated through mutation. We show that such genes can be systematically discovered by mining cancer sequencing data for evidence of purifying selection. We show that purifying selection reduces substitution rates in coding regions of cancer genomes, depleting up to 90% of mutations for some genes. Moreover, mutations resulting in non-conservative amino acid substitutions are under strong negative selection in tumors, whereas conservative substitutions are more tolerated. Genes under purifying selection include members of the EGFR and FGFR pathways in lung adenocarcinomas, and DNA repair pathways in melanomas. A systematic assessment of purifying selection in tumors would identify hundreds of tumor-specific enablers and thus novel targets for therapy.


2020 ◽  
Author(s):  
Sergio Casas-Tintó ◽  
Alberto Ferrús

ABSTRACTHaplolethals (HL) are regions of diploid genomes that in one dose are fatal for the organism. Their biological meaning is obscure, given that heterozygous loss-of-function mutations will result in dominant lethality and, consequently, should be under strong negative selection. In addition, their biological nature is under debate: a chromosomal structure that is essential for the expression of several genes (regulatory hypothesis), or the strict dosage requirement of one particular gene (functional hypothesis). We report the first in depth study of an haplolethal region, the one associated to the Drosophila gene wings up A (wupA). It encodes 13 transcripts (A-M) that yield 11 protein isoforms (A-K) of Troponin I (TnI). They are functionally diverse in their control of muscle contraction, cell polarity and cell proliferation. Isoform K can transfer to the nucleus where it increases the transcription of the cell proliferation related genes CDK2, CDK4, Rap and Rab5. The nuclear translocation of isoform K is prevented by the co-expression of A or B isoforms, which illustrates isoform interactions. The corresponding dominant lethal mutations (DL) result from DNA rearrangements, clustered in the intron between exons 7-8, and affect the genomic organization of all transcripts. The joint elimination of isoforms C, F, G and H, however, do not cause DL phenotypes. Genetically driven expression of single isoforms rescue neither DL nor any of the mutants known in the gene, suggesting that normal function of wupA requires the properly regulated expression of specific combinations, rather than single, TnI isoforms along development. We conclude that the HL function at wupA results from the combined haploinsufficiency of a large set of TnI isoforms. The qualitative and quantitative normal expression of which, requires the chromosomal integrity of the wupA genomic region. Since all fly TnI isoforms are encoded in the same gene, its HL condition becomes unavoidable.Author summaryMost species contain two copies of their genetic endowment, each received from their progenitors. If one of the duplicated genes is non-functional, due to either null mutations or genomic loss, the remaining gene copy may supply enough product as to cover the requirements for normal function or, alternatively, may reflect the insufficiency through a visible phenotype. In rare occasions, however, mutation in one copy is so deleterious that causes lethality, usually at early stages of development. These so called “haplolethal regions”, exist across species and represent an evolutionary paradox since they should have been subject to intense negative selection. The inherent difficulties to study haplolethals have precluded their study so far. Here, we analyzed the case of one of the five haplolethal regions of Drosophila, the one associated to the Troponin I encoding gene wupA, by measuring the transcriptional effects of mutations and chromosomal rearrangements affecting this gene. The data show that haplolethality results from the combined insufficiency of a large number of Troponin I isoforms, which are functionally specialized, show interference and require the integrity of the native chromatin structure for their quantitatively regulated expression. These features unveil novel aspects of gene expression and, possibly, on evolutionary gene splitting.


1989 ◽  
Vol 67 (10) ◽  
pp. 2540-2542 ◽  
Author(s):  
William H. Cade

Nightly and hourly rates of attraction of flying field crickets, Gryllus integer, to conspecific calling song were studied in an arena placed in the natural habitat of the species in central Texas. Calling of male G. integer in the arena and tape-recorded broadcasts of conspecific song were the sources of cricket song that subsequently attracted flying crickets. Observations were conducted for 10 h from approximately 1.5–2 h past sunset to 3 h past sunrise for 97 nights in 1983 and 1985–1988, using calling males, and for 4 nights in 1988, using taped song. The number of crickets attracted each night varied greatly, significantly more females were attracted, the numbers of males and females attracted decreased near sunrise, and significantly more crickets entered the arena from 2 to 6 h than from 7 to 11 h past sunset. Results are discussed in the context of mating behavior and sexual selection in this and other species.


1998 ◽  
Vol 18 (10) ◽  
pp. 5762-5770 ◽  
Author(s):  
Roberto Rosato ◽  
Jacqueline M. Veltmaat ◽  
John Groffen ◽  
Nora Heisterkamp

ABSTRACT The Fer protein belongs to the fes/fps family of nontransmembrane receptor tyrosine kinases. Lack of success in attempts to establish a permanent cell line overexpressing it at significant levels suggested a strong negative selection against too much Fer protein and pointed to a critical cellular function for Fer. Using a tetracycline-regulatable expression system, overexpression of Fer in embryonic fibroblasts was shown to evoke a massive rounding up, and the subsequent detachment of the cells from the substratum, which eventually led to cell death. Induction of Fer expression coincided with increased complex formation between Fer and the cadherin/src-associated substrate p120 cas and elevated tyrosine phosphorylation of p120 cas . β-Catenin also exhibited clearly increased phosphotyrosine levels, and Fer and β-catenin were found to be in complex. Significantly, although the levels of α-catenin, β-catenin, and E-cadherin were unaffected by Fer overexpression, decreased amounts of α-catenin and β-catenin were coimmunoprecipitated with E-cadherin, demonstrating a dissolution of adherens junction complexes. A concomitant decrease in levels of phosphotyrosine in the focal adhesion-associated protein p130 was also observed. Together, these results provide a mechanism for explaining the phenotype of cells overexpressing Fer and indicate that the Fer tyrosine kinase has a function in the regulation of cell-cell adhesion.


2019 ◽  
Author(s):  
Saioa López ◽  
Emilia Lim ◽  
Ariana Huebner ◽  
Michelle Dietzen ◽  
Thanos Mourikis ◽  
...  

AbstractWhole genome doubling (WGD) is a prevalent macro-evolutionary event in cancer, involving a doubling of the entire chromosome complement. However, despite its prevalence and clinical prognostic relevance, the evolutionary selection pressures for WGD have not been investigated. Here, we explored whether WGD may act to mitigate the irreversible, inexorable ratchet-like, accumulation of deleterious mutations in essential genes. Utilizing 1050 tumor regions from 816 non-small cell lung cancers (NSCLC), we temporally dissect mutations to determine their temporal acquisition in relation to WGD. We find evidence for strong negative selection against homozygous loss of essential cancer genes prior to WGD. However, mutations in essential genes occurring after duplication were not subject to significant negative selection, consistent with WGD providing a buffering effect, decreasing the likelihood of homozygous loss. Finally, we demonstrate that loss of heterozygosity and temporal dissection of mutations can be exploited to identify signals of positive selection in lung, breast, colorectal cancer and other cancer types, enabling the elucidation of novel tumour suppressor genes and a deeper characterization of known cancer genes.


Sign in / Sign up

Export Citation Format

Share Document