scholarly journals Cladogenesis and replacement in the fossil record of Microsyopidae (?Primates) from the southern Bighorn Basin, Wyoming

2021 ◽  
Vol 17 (2) ◽  
Author(s):  
Mary T. Silcox ◽  
Keegan R. Selig ◽  
Thomas M. Bown ◽  
Amy E. Chew ◽  
Kenneth D. Rose

The early Eocene of the southern Bighorn Basin, Wyoming, is notable for its nearly continuous record of mammalian fossils. Microsyopinae (?Primates) is one of several lineages that shows evidence of evolutionary change associated with an interval referred to as Biohorizon A. Arctodontomys wilsoni is replaced by a larger species, Arctodontomys nuptus , during the biohorizon interval in what is likely an immigration/emigration or immigration/local extinction event. The latter is then superseded by Microsyops angustidens after the end of the Biohorizon A interval. Although this pattern has been understood for some time, denser sampling has led to the identification of a specimen intermediate in morphology between A. nuptus and M. angustidens , located stratigraphically as the latter is appearing. Because specimens of A. nuptus have been recovered approximately 60 m above the appearance of M. angustidens , it is clear that A. nuptus did not suffer pseudoextinction. Instead, evidence suggests that M. angustidens branched off from a population of A. nuptus , but the latter species persisted. This represents possible evidence of cladogenesis, which has rarely been directly documented in the fossil record. The improved understanding of both evolutionary transitions with better sampling highlights the problem of interpreting gaps in the fossil record as punctuations.

Zootaxa ◽  
2020 ◽  
Vol 4838 (1) ◽  
pp. 137-142
Author(s):  
PRIYA AGNIHOTRI ◽  
KAJAL CHANDRA ◽  
ANUMEHA SHUKLA ◽  
HUKAM SINGH ◽  
RAKESH C. MEHROTRA

A fossil of a mayfly nymph that shows similarities with the modern genus Teloganella Ulmer, 1939 of the family Teloganellidae is recorded for the first time from the Indian subcontinent. It is systematically described from the Gurha lignite mine of Bikaner, Rajasthan which belongs to the Palana Formation (late Paleocene-early Eocene). As assignment of the fossil to a modern species of Teloganella is difficult due to indistinguishable location of gills in the impression, a new species, Teloganella gurhaensis Agnihotri et al., sp. nov. is instituted to include this fossil naiad resembling the extant Teloganella. 


1992 ◽  
Vol 6 ◽  
pp. 174-174 ◽  
Author(s):  
Conrad C. Labandeira

A considerable amount of research has been devoted toward evaluating the impact of the Cretaceous/Tertiary extinction on terrestrial life. This research has focused primarily on terrestrial vertebrates (primarily dinosaurs), marine invertebrates (notably molluscs and foraminifera), and to a lesser extent, terrestrial vascular plants. Terrestrial arthropods, especially insects, have seldomly been investigated, principally because of an alleged depauperate fossil record. Nevertheless, within the past two decades, some of the most productive and taxonomically diverse insect faunas have originated from Cretaceous amber- and compression-fossil deposits from every continent. Whereas it was once thought that the Cretaceous represented an unknown void in the understanding of insect evolution, now it appears that many extant lineages are traceable to Cretaceous precursors.Three approaches are available for determining the extent of the effect of the terminal Cretaceous extinction event on insects. Assessed for the interval from the Early Cretaceous to the Early Paleogene, these approaches are: (1) establishing the secular pattern of familial- and generic-based taxonomic diversity (macroevolution); (2) recognizing the persistence or eradication of specific insect/vascular plant interactions, such as leaf-mining, wood-boring and pollination (behavior); and (3) establishing temporal trends in the range of mouthpart design, as an indicator of faunal disparity or structural diversity (morphology). These three operationally separate but complimentary approaches allow the advantage of using distinct data bases to bear on a common question. The body-fossil record of insects provides primary data for the taxonomic expansion, steady-state, or contraction of insect faunas. The trace-fossil record of those insect interactions that are coevolved with plant hosts reveals the temporal continuity of highly stereotyped and taxonomically obligate behaviors. Both of these are contrasted to an assessment of insectan structural disparity, herein determined from a robust data base of 30 modern insect mouthpart classes that are traced back in geologic time.A preliminary analysis of each of these three approaches indicates broad agreement–namely that insects were not dramatically affected by the terminal Cretaceous extinction event. First, insects experienced only a modest decline in diversity, about 9 percent at the family level. (The generic level is not yet analyzed.) Second, although the data base is limited, there is no indication of the extinction of major leaf-mining, wood-boring, pollinating or other plant-specific behaviors at the end of the Cretaceous. In fact, leaf-mine morphologies for three lepidopteran families with Cretaceous occurrences are apparently indistinguishable from their modern descendants. Last, of the 30 mouthpart classes occurring during the Paleogene, 28 are represented during the Cretaceous. These data provide strong evidence for a largely uninterrupted continuum of insect faunas across the Cretaceous/Tertiary boundary as measured by taxonomic diversity, coevolved behavior, and structural disparity.Because of abundant and often intimate associations between insects and flowering plants, these results are consistent with a gradual and not catastrophic change in terrestrial floras across the Cretaceous/Tertiary boundary. Acceptance of a catastrophic extinction of flowering plants during the terminal Cretaceous would necessitate an unprecedented level of host-switching by coevolved insects on contemporaneous plants. This is unlikely, based on evidence from the prolific literature on modern insect/plant interactions. These studies indicate the ubiquity of obligate insect specificity for various secondary chemicals on many flowering plant species.


2020 ◽  
Vol 8 ◽  
Author(s):  
Grace Musser ◽  
Julia A. Clarke

The stem lineage relationships and early phenotypic evolution of Charadriiformes (shorebirds) and Gruiformes (rails, cranes, and allies) remain unresolved. It is still debated whether these clades are sister-taxa. New phylogenetic analyses incorporating Paleogene fossils have the potential to reveal the evolutionary connections of these two speciose and evolutionarily critical neoavian subclades. Although Gruiformes have a rich Paleogene fossil record, most of these fossils have not been robustly placed. The Paleogene fossil record of Charadriiformes is scarce and largely consists of fragmentary single elements. Only one proposed Eocene charadriiform-like taxon, Scandiavis mikkelseni of Denmark, is represented by a partial skeleton. Here, we describe a new species from the early Eocene Green River Formation of North America comprising a partial skeleton and feather remains. Because the skeleton lacks the pectoral girdle and forelimbs as in S. mikkelseni, only features of the skull, axial skeleton, and hind limb are available to resolve the phylogenetic placement of this taxon. These anatomical subregions initially showed features seen in Charadriiformes and Gruiformes. To assess placement of this taxon, we use a matrix consisting of 693 morphological characters and 60 taxa, including S. mikkelseni and the oldest known charadriiform taxa represented by single elements. These more fragmentary records comprise two distal humeri from the earliest Eocene Naranbulag Formation of Mongolia and the early Eocene Nanjemoy Formation of Virginia. Our phylogenetic analyses recover the new taxon and S. mikkelseni alternatively as a charadriiform or as a stem-gruiform; placement is contingent upon enforced relationships for major neoavian subclades recovered by recent molecular-based phylogenies. Specifically, when constraint trees based on results that do not recover Charadriiformes and Gruiformes as sister-taxa are used, the new taxon and S. mikkelseni are recovered within stem Gruiformes. Both Paleogene fossil humeri are consistently recovered within crown Charadriiformes. If placement of these humeri or the new taxon as charadriiforms are correct, this may indicate that recent divergence time analyses have underestimated the crown age of another major crown avian subclade; however, more complete sampling of these taxa is necessary, especially of more complete specimens with pectoral elements.


Zootaxa ◽  
2009 ◽  
Vol 2063 (1) ◽  
pp. 55-63 ◽  
Author(s):  
VLADIMIR N. MAKARKIN ◽  
S. BRUCE ARCHIBALD

A new genus and species Allorapisma chuorum gen. sp. nov. is described from the Early Eocene locality at Republic, Washington, U.S.A. The forewing venation of Allorapisma is most similar to that of the genus Principiala Makarkin & Menon from the Early Cretaceous of Brazil and Britain. A new, informal suprageneric taxon consisting of these genera is proposed, the Principiala group. The habitats of extant and fossil Ithonidae are briefly discussed.


2013 ◽  
Vol 154 (1) ◽  
pp. 25
Author(s):  
Antonio De Angeli ◽  
Loris Ceccon

The decapod crustaceans of the families Tetraliidae and Trapeziidae from the Early Eocene (middle-late Ypresian) of Monte Magrè (Schio, Vicenza, NE Italy), are described. The specimens are assigned to <em>Eurotetralia loerenthey</em> (Müller, 1975) n. gen., <em>Tetralia vicetina</em> n. sp. (Tetraliidae Castro, Ng &amp; Ahyong, 2004); <em>Archaeotetra lessinea</em> n. sp., <em>Eomaldivia trispinosa</em> Müller &amp; Collins, 1991, <em>Paratetralia convexa</em> Beschin, Busulini, De Angeli &amp; Tessier, 2007, and <em>Paratetralia sulcata</em> n. sp. (Trapeziidae Miers, 1886).<br />The specimens were discovered associated with other decapods, in the coral-rich limestone. This report is the oldest fossil record of both two families. The stratigraphical distribution of the Tetraliidae and Trapeziidae is extended back to the middle-late Ypresian.


2019 ◽  
Vol 56 (8) ◽  
pp. 803-813
Author(s):  
Gerald Mayr ◽  
S. Bruce Archibald ◽  
Gary W. Kaiser ◽  
Rolf W. Mathewes

We survey the known avian fossils from Ypresian (early Eocene) fossil sites of the North American Okanagan Highlands, mainly in British Columbia (Canada). All specimens represent taxa that were previously unknown from the Eocene of far-western North America. Wings from the McAbee site are tentatively referred to the Gaviiformes and would constitute the earliest fossil record of this group of birds. A postcranial skeleton from Driftwood Canyon is tentatively assigned to the Songziidae, a taxon originally established for fossils from the Ypresian of China. Two skeletons from Driftwood Canyon and the McAbee site are tentatively referred to Coliiformes and Zygodactylidae, respectively, whereas three further fossils from McAbee, Blakeburn, and Republic (Washington, USA) are too poorly preserved for even a tentative assignment. The specimens from the Okanagan Highlands inhabited relatively high paleoaltitudes with microthermal climates (except Quilchena: lower mesothermal) and mild winters, whereas most other Ypresian fossil birds are from much warmer lowland paleoenvironments with upper mesothermal to megathermal climates. The putative occurrence of a gaviiform bird is particularly noteworthy because diving birds are unknown from other lacustrine Ypresian fossil sites of the Northern Hemisphere. The bones of the putative zygodactylid show a sulphurous colouration, and we hypothesize that this highly unusual preservation may be due to the metabolic activity of sulphide-oxidizing bacteria.


Sign in / Sign up

Export Citation Format

Share Document