scholarly journals The interplay of cell–cell and cell–substrate adhesion in collective cell migration

2014 ◽  
Vol 11 (100) ◽  
pp. 20140684 ◽  
Author(s):  
Chenlu Wang ◽  
Sagar Chowdhury ◽  
Meghan Driscoll ◽  
Carole A. Parent ◽  
S. K. Gupta ◽  
...  

Collective cell migration often involves notable cell–cell and cell–substrate adhesions and highly coordinated motion of touching cells. We focus on the interplay between cell–substrate adhesion and cell–cell adhesion. We show that the loss of cell-surface contact does not significantly alter the dynamic pattern of protrusions and retractions of fast migrating amoeboid cells ( Dictyostelium discoideum ), but significantly changes their ability to adhere to other cells. Analysis of the dynamics of cell shapes reveals that cells that are adherent to a surface may coordinate their motion with neighbouring cells through protrusion waves that travel across cell–cell contacts. However, while shape waves exist if cells are detached from surfaces, they do not couple cell to cell. In addition, our investigation of actin polymerization indicates that loss of cell-surface adhesion changes actin polymerization at cell–cell contacts. To further investigate cell–cell/cell–substrate interactions, we used optical micromanipulation to form cell–substrate contact at controlled locations. We find that both cell-shape dynamics and cytoskeletal activity respond rapidly to the formation of cell–substrate contact.

1990 ◽  
Vol 110 (3) ◽  
pp. 803-815 ◽  
Author(s):  
H Larjava ◽  
J Peltonen ◽  
S K Akiyama ◽  
S S Yamada ◽  
H R Gralnick ◽  
...  

We have examined the expression, localization, and function of beta 1 integrins on cultured human epidermal keratinocytes using polyclonal and monoclonal antibodies against the beta 1, alpha 2, alpha 3, and alpha 5 integrin subunits. The beta 1 polypeptide, common to all class 1 integrins, was localized primarily in areas of cell-cell contacts of cultured keratinocytes, as were alpha 2 and alpha 3 polypeptides, suggesting a possible role in cell-cell adhesion for these integrin polypeptides. In contrast, the fibronectin receptor alpha 5 subunit showed no such accumulations in regions of cell-cell contact but was more diffusely distributed in the keratinocyte plasma membrane, consistent with the absence of fibronectin at cell-cell contact sites. Colonies of cultured keratinocytes could be dissociated by treatment with monoclonal antibody specific to the beta 1 polypeptide. Such dissociation of cell-cell contacts also occurred under conditions where the monoclonal antibody had no effect on cell-substrate adhesion. Therefore, beta 1 integrin-dependent cell-cell adhesion can be inhibited without affecting other cell-adhesive interactions. Antibody treatment of keratinocytes maintained in either low (0.15 mM) or high (1.2 mM) CaCl2 also resulted in the loss of organization of intracellular F-actin filaments and beta 1 integrins, even when the anti-beta 1 monoclonal antibody had no dissociating effect on keratinocyte colonies at the higher calcium concentration. Our results indicate that beta 1 integrins play roles in the maintenance of cell-cell contacts between keratinocytes and in the organization of intracellular microfilaments. They suggest that in epithelial cells integrins can function in cell-cell interactions as well as in cell-substrate adhesion.


2010 ◽  
Vol 13 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Cristina Hidalgo-Carcedo ◽  
Steven Hooper ◽  
Shahid I. Chaudhry ◽  
Peter Williamson ◽  
Kevin Harrington ◽  
...  

Pathology ◽  
1992 ◽  
Vol 24 ◽  
pp. 26
Author(s):  
M.A. Vadas ◽  
J.R. Gamble ◽  
Y. Khew-Goodall ◽  
P. Kaur

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3485
Author(s):  
Shashi Prakash Singh ◽  
Peter A. Thomason ◽  
Robert H. Insall

The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here, we report that the Abi subunit—but not Scar—is phosphorylated in response to extracellular signalling in Dictyostelium cells. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation—cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. Dictyostelium, in which Scar and Abi are both unphosphorylatable, can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.


1995 ◽  
Vol 108 (2) ◽  
pp. 831-838 ◽  
Author(s):  
B.E. Symington ◽  
W.G. Carter

We previously reported that integrin alpha 3 beta 1 mediates epidermal intercellular adhesion as well as cell-substrate adhesion. P1B5, an anti-alpha 3 beta 1 specific monoclonal antibody, is a potent in vitro trigger of epidermal cell-cell adhesion and an inhibitor of cell-substrate adhesion. We now show that P1B5 specifically induces the intercellular localization of integrins alpha 2 beta 1 and alpha 3 beta 1, consistent with its role in inducing intercellular adhesion via these two integrins. P1F2, another anti-alpha 3 beta 1 antibody, does not induce either intercellular adhesion or intercellular accumulation of alpha 3 beta 1 and alpha 2 beta 1. Growth of epidermal cells in high calcium, known to induce epidermal differentiation, also induces intercellular accumulation of alpha 3 beta 1 and alpha 2 beta 1 and increased cell-cell adhesion. We therefore asked whether P1B5 treatment induces epidermal differentiation. P1B5 treatment induces changes consistent with epidermal differentiation, including increased involucrin expression, stratification, and production of squames. P1F2 treatment has none of these effects. In vivo, epidermal basal cells are in close contact with the epithelial basement membrane component epiligrin. Growth of keratinocytes on purified epiligrin but not other matrix components specifically reduces involucrin expression by P1B5-treated keratinocytes. These results suggest that integrin alpha 3 beta 1 has a unique role in epidermal differentiation, that the epitope recognized by P1B5 is involved in triggering this differentiation, and that keratinocyte adhesion to epiligrin inhibits alpha 3 beta 1-mediated differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document