scholarly journals Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales

2015 ◽  
Vol 12 (111) ◽  
pp. 20150717 ◽  
Author(s):  
Bodo D. Wilts ◽  
Atsuko Matsushita ◽  
Kentaro Arikawa ◽  
Doekele G. Stavenga

The colourful wing patterns of butterflies play an important role for enhancing fitness; for instance, by providing camouflage, for interspecific mate recognition, or for aposematic display. Closely related butterfly species can have dramatically different wing patterns. The phenomenon is assumed to be caused by ecological processes with changing conditions, e.g. in the environment, and also by sexual selection. Here, we investigate the birdwing butterflies, Ornithoptera , the largest butterflies of the world, together forming a small genus in the butterfly family Papilionidae. The wings of these butterflies are marked by strongly coloured patches. The colours are caused by specially structured wing scales, which act as a chirped multilayer reflector, but the scales also contain papiliochrome pigments, which act as a spectral filter. The combined structural and pigmentary effects tune the coloration of the wing scales. The tuned colours are presumably important for mate recognition and signalling. By applying electron microscopy, (micro-)spectrophotometry and scatterometry we found that the various mechanisms of scale coloration of the different birdwing species strongly correlate with the taxonomical distribution of Ornithoptera species.

Biomimetics ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Sigrid Zobl ◽  
Bodo D. Wilts ◽  
Willi Salvenmoser ◽  
Peter Pölt ◽  
Ille C. Gebeshuber ◽  
...  

The photonic structures of butterfly wing scales are widely known to cause angle-dependent colours by light interference with nanostructures present in the wing scales. Here, we quantify the relevance of the horizontal alignment of the butterfly wing scales on the wing. The orientation-dependent reflection was measured at four different azimuth angles, with a step size of 90°, for ten samples—two of different areas of the same species—of eight butterfly species of three subfamilies at constant angles of illumination and observation. For the observed species with varying optical structures, the wing typically exhibits higher orientation-dependent reflections than the individual scale. We find that the measured anisotropy is caused by the commonly observed grating structures that can be found on all butterfly wing scales, rather than the local photonic structures. Our results show that the technique employed here can be used to quickly evaluate the orientation-dependence of the reflection and hence provide important input for bio-inspired applications, e.g., to identify whether the respective structure is suitable as a template for nano-imprinting techniques.


2008 ◽  
Vol 6 (suppl_2) ◽  
Author(s):  
Bodo D Wilts ◽  
Hein L Leertouwer ◽  
Doekele G Stavenga

We studied the structural as well as spatial and spectral reflectance characteristics of the wing scales of lycaenid butterfly species, where the scale bodies consist of perforated multilayers. The extent of the spatial scattering profiles was measured with a newly built scatterometer. The width of the reflectance spectra, measured with a microspectrophotometer, decreased with the degree of perforation, in agreement with the calculations based on multilayer theory.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1741
Author(s):  
Hiroyuki Takei ◽  
Kazuki Nagata ◽  
Natalie Frese ◽  
Armin Gölzhäuser ◽  
Takayuki Okamoto

Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for obtaining structural information of molecules in solution at low concentrations. While commercial SERS substrates are available, high costs prevent their wide-spread use in the medical field. One solution is to prepare requisite noble metal nanostructures exploiting natural nanostructures. As an example of biomimetic approaches, butterfly wing scales with their intricate nanostructures have been found to exhibit exquisite SERS activity when coated with silver. Selecting appropriate scales from particular butterfly species and depositing silver of certain thicknesses leads to significant SERS activity. For morphological observations we used scanning electron microscopes as well as a helium ion microscope, highly suitable for morphological characterization of poorly conducting samples. In this paper, we describe a protocol for carrying out SERS measurements based on butterfly wing scales and demonstrate its LOD with a common Raman reporter, rhodamine 6 G. We also emphasize what special care is necessary in such measurements. We also try to shed light on what makes scales work as SERS substrates by carefully modifying the original nanostructures. Such a study allows us to either use scales directly as a raw material for SERS substrate or provides an insight as to what nanostructures need to be recreated for synthetic SERS substrates.


2017 ◽  
Vol 114 (40) ◽  
pp. 10701-10706 ◽  
Author(s):  
Anyi Mazo-Vargas ◽  
Carolina Concha ◽  
Luca Livraghi ◽  
Darli Massardo ◽  
Richard W. R. Wallbank ◽  
...  

Butterfly wing patterns provide a rich comparative framework to study how morphological complexity develops and evolves. Here we used CRISPR/Cas9 somatic mutagenesis to test a patterning role for WntA, a signaling ligand gene previously identified as a hotspot of shape-tuning alleles involved in wing mimicry. We show that WntA loss-of-function causes multiple modifications of pattern elements in seven nymphalid butterfly species. In three butterflies with a conserved wing-pattern arrangement, WntA is necessary for the induction of stripe-like patterns known as symmetry systems and acquired a novel eyespot activator role specific to Vanessa forewings. In two Heliconius species, WntA specifies the boundaries between melanic fields and the light-color patterns that they contour. In the passionvine butterfly Agraulis, WntA removal shows opposite effects on adjacent pattern elements, revealing a dual role across the wing field. Finally, WntA acquired a divergent role in the patterning of interveinous patterns in the monarch, a basal nymphalid butterfly that lacks stripe-like symmetry systems. These results identify WntA as an instructive signal for the prepatterning of a biological system of exuberant diversity and illustrate how shifts in the deployment and effects of a single developmental gene underlie morphological change.


Small ◽  
2015 ◽  
Vol 12 (6) ◽  
pp. 713-720 ◽  
Author(s):  
Zhiwu Han ◽  
Zhengzhi Mu ◽  
Bo Li ◽  
Shichao Niu ◽  
Junqiu Zhang ◽  
...  

2007 ◽  
Vol 274 (1612) ◽  
pp. 913-917 ◽  
Author(s):  
Robert B Srygley

Many unpalatable butterfly species use coloration to signal their distastefulness to birds, but motion cues may also be crucial to ward off predatory attacks. In previous research, captive passion-vine butterflies Heliconius mimetic in colour pattern were also mimetic in motion. Here, I investigate whether wing motion changes with the flight demands of different behaviours. If birds select for wing motion as a warning signal, aposematic butterflies should maintain wing motion independently of behavioural context. Members of one mimicry group ( Heliconius cydno and Heliconius sapho ) beat their wings more slowly and their wing strokes were more asymmetric than their sister-species ( Heliconius melpomene and Heliconius erato , respectively), which were members of another mimicry group having a quick and steady wing motion. Within mimicry groups, wing beat frequency declined as its role in generating lift also declined in different behavioural contexts. In contrast, asymmetry of the stroke was not associated with wing beat frequency or behavioural context—strong indication that birds process and store the Fourier motion energy of butterfly wings. Although direct evidence that birds respond to subtle differences in butterfly wing motion is lacking, birds appear to generalize a motion pattern as much as they encounter members of a mimicry group in different behavioural contexts.


Small ◽  
2016 ◽  
Vol 12 (6) ◽  
pp. 689-689
Author(s):  
Zhiwu Han ◽  
Zhengzhi Mu ◽  
Bo Li ◽  
Shichao Niu ◽  
Junqiu Zhang ◽  
...  

2014 ◽  
Vol 39 ◽  
pp. 221-226 ◽  
Author(s):  
K. Kertész ◽  
G. Piszter ◽  
E. Jakab ◽  
Zs. Bálint ◽  
Z. Vértesy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document