wing beat
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 19)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Yaser Saffar Talori ◽  
Jing-Shan Zhao ◽  
Jingmai K O'Connor

This study seeks to better quantify the parameters that drove the evolution of flight from non-volant winged dinosaurs to modern birds. In order to explore this issue, we used fossil data to model the feathered forelimbs of Caudipteryx, the most basal non-volant maniraptoran dinosaur with elongated pennaceous feathers that could be described as forming proto-wings. In order to quantify the limiting flight factors, we created three hypothetical wing profiles for Caudipteryx with incrementally larger wingspans. We compared them with what revealed through fossils in wing morphology. These four models were analyzed under varying air speed, wing beat amplitude, and wing beat frequency to determine lift, thrust potential, and metabolic requirements. We tested these models using theoretical equations in order to mathematically describe the evolutionary changes observed during the evolution of modern birds from a winged terrestrial theropod like Caudipteryx. Caudipteryx could not fly, but this research indicates that with a large enough wing span, Caudipteryx-like animal could have flown. The results of these analyses mathematically confirm that during the evolution of energetically efficient powered flight in derived maniraptorans, body weight had to decrease and wing area/wing profile needed to increase together with the flapping angle and surface area for the attachment of the flight muscles. This study quantifies the morphological changes that we observe in the pennaraptoran fossil record in the overall decrease in body size in paravians, the increased wing surface area in Archaeopteryx relative to Caudipteryx, and changes observed in the morphology of the thoracic girdle, namely, the orientation of the glenoid and the enlargement of the sternum.


2021 ◽  
pp. 130-142
Author(s):  
Susan McCabe

The threesome, Macpherson, Bryher, and H.D., established the Pool Group, its logo of spreading concentric rings suggestive of its expansive goal; they made a first film, Wing Beat, drawing Robert Herring into their circle. They created Close Up, the first journal in English devoted to experimental film arts. Bryher and Macpherson visited Berlin for all-day screenings, met G. W. Pabst and Hanns Sachs, the latter becoming Bryher’s psychoanalyst. After making Foothills, H.D. was pregnant by Macpherson and underwent an abortion, leading to tension in the trio. They had tried for a polygamous ménage, but this affair left them all hurting, especially with Macpherson realizing he was exclusively attracted to men. Perdita suffered at boarding school, mirroring the tensions in her experimental family. H.D. grieved her mother’s death in 1927 through HERmione. The group scrapbook resonates with their attempt to innovate diverse spatialized identities.


2021 ◽  
Author(s):  
Sergey E. Farisenkov ◽  
Dmitry Kolomenskiy ◽  
Pyotr N. Petrov ◽  
Nadejda A. Lapina ◽  
Thomas Engels ◽  
...  

Flight speed generally correlates positively with animal body size [1]. Surprisingly, miniature featherwing beetles can fly at speeds and accelerations of insects three times as large [2]. We show here that this performance results from a previously unknown type of wing motion. Our experiment combines three-dimensional reconstructions of morphology and kinematics in one of the smallest insects, Paratuposa placentis (body length 395 μm). The flapping bristled wing follows a pronounced figure-eight loop that consists of subperpendicular up and down strokes followed by claps at stroke reversals, above and below the body. Computational analyses suggest a functional decomposition of the flapping cycle in two power half strokes producing a large upward force and two down-dragging recovery half strokes. In contrast to heavier membranous wings, the motion of bristled wings of the same size requires little inertial power. Muscle mechanical power requirements thus remain positive throughout the wing beat cycle, making elastic energy storage obsolete. This novel flight style evolved during miniaturization may compensate for costs associated with air viscosity and helps explain how extremely small insects preserved superb aerial performance during miniaturization. Incorporating this flight style in artificial flappers is a challenge for designers of micro aerial vehicles.


Apidologie ◽  
2021 ◽  
Author(s):  
Antonio R. S. Parmezan ◽  
Vinicius M. A. Souza ◽  
Indrė Žliobaitė ◽  
Gustavo E. A. P. A. Batista

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3329
Author(s):  
Yuting Sun ◽  
Yueyu Lin ◽  
Guangyu Zhao ◽  
Sune Svanberg

Insects constitute a very important part of the global ecosystem and include pollinators, disease vectors, and agricultural pests, all with pivotal influence on society. Monitoring and control of such insects has high priority, and automatic systems are highly desirable. While capture and analysis by biologists constitute the gold standard in insect identification, optical and laser techniques have the potential for high-speed detection and automatic identification based on shape, spectroscopic properties such as reflectance and fluorescence, as well as wing-beat frequency analysis. The present paper discusses these approaches, and in particular presents a novel method for automatic identification of mosquitos based on image analysis, as the insects enter a trap based on a combination of chemical and suction attraction. Details of the analysis procedure are presented, and selectivity is discussed. An accuracy of 93% is achieved by our proposed method from a data set containing 122 insect images (mosquitoes and bees). As a powerful and cost-effective method, we finally propose the combination of imaging and wing-beat frequency analysis in an integrated instrument.


2021 ◽  
Vol 224 (4) ◽  
pp. jeb236240
Author(s):  
Klara Kihlström ◽  
Brett Aiello ◽  
Eric Warrant ◽  
Simon Sponberg ◽  
Anna Stöckl

ABSTRACTWing integrity is crucial to the many insect species that spend distinct portions of their life in flight. How insects cope with the consequences of wing damage is therefore a central question when studying how robust flight performance is possible with such fragile chitinous wings. It has been shown in a variety of insect species that the loss in lift-force production resulting from wing damage is generally compensated by an increase in wing beat frequency rather than amplitude. The consequences of wing damage for flight performance, however, are less well understood, and vary considerably between species and behavioural tasks. One hypothesis reconciling the varying results is that wing damage might affect fast flight manoeuvres with high acceleration, but not slower ones. To test this hypothesis, we investigated the effect of wing damage on the manoeuvrability of hummingbird hawkmoths (Macroglossum stellatarum) tracking a motorised flower. This assay allowed us to sample a range of movements at different temporal frequencies, and thus assess whether wing damage affected faster or slower flight manoeuvres. We show that hummingbird hawkmoths compensate for the loss in lift force mainly by increasing wing beat amplitude, yet with a significant contribution of wing beat frequency. We did not observe any effects of wing damage on flight manoeuvrability at either high or low temporal frequencies.


Author(s):  
Mrudul Chellapurath ◽  
Sam Noble ◽  
KG Sreejalekshmi

The article presents a novel flapping wing mechanism for Micro Aerial Vehicle (MAV) inspired by one of the most efficient flyers of the aerial world, the Common swift ( Apus apus). The flight characteristics such as wing beat frequency, wing beat amplitude, and fore and aft movements, as well as wing rotation of the bird at a flight speed 8 m /s, were studied. The common swift rotates its hand wing keeping the pitch of the arm wing constant during the entire wingbeat cycle. The hand wing undergoes forward rotation during the downstroke and backward rotation during the upstroke. This complex wing kinematics enables swift to generate various unsteady aerodynamic mechanisms. Using the geometric and kinematic details, a flapping wing mechanism that emulates the wing kinematics of the bird was designed. The flapping wing mechanism based on the epicyclic ellipsograph mechanism presented herein integrates flapping motion, fore and aft motion, and selective wing rotation. Importantly, this fully constrained mechanism allows performing all the key kinematic motions of the common swift with a single actuator. A kinematic model of the mechanism is presented to calculate the design parameters based on the scale of the MAV. Kinematic simulation of the mechanism is also presented to verify the design.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Dinarte Vasconcelos ◽  
Nuno Jardim Nunes ◽  
João Gomes

Abstract As vectors of malaria, dengue, zika, and yellow fever, mosquitoes are considered one of the more severe worldwide health hazards. Widespread surveillance of mosquitoes is essential for understanding their complex ecology and behaviour, and also for predicting and formulating effective control strategies against mosquito-borne diseases. One technique involves using bioacoustics to automatically identify different species from their wing-beat sounds during flight. In this dataset, we collect sounds of three species of mosquitoes: Aedes Aegypti, Culex Quinquefasciatus & Pipiens, and Culiseta. These species were collected and reproduced in the laboratory of the Natural History Museum of Funchal, in Portugal, by entomologists trained to recognize and classify mosquitoes. For collecting the samples, we used a microcontroller and a mobile phone. The dataset presents audio samples collected with different sampling rates, where 34 audio features characterize each sound file, making it is possible to observe how mosquito populations vary heterogeneously. This dataset provides the basis for feature extraction and classification of flapping-wing flight sounds that could be used to identify different species.


2020 ◽  
Author(s):  
Klara Kihlström ◽  
Brett Aiello ◽  
Eric J. Warrant ◽  
Simon Sponberg ◽  
Anna Stöckl

The integrity of their wings is crucial to the many insect species that spend distinct portions of their life in flight. How insects cope with the consequences of wing damage is therefore a central question when studying how robust flight performance is possible with such fragile chitinous wings. It has been shown in a variety of insect species that the loss in lift-force production resulting from wing damage is generally compensated by an increase in wing beat frequency rather than amplitude. The consequences of wing damage for flight performance, however, are less well understood, and vary considerably between species and behavioural tasks. One hypothesis reconciling the varying results is that wing damage might affect fast flight manoeuvres with high acceleration, but not slower ones. To test this hypothesis, we investigated the effect of wing damage on the manoeuvrability of hummingbird hawkmoths (Macroglossum stellatarum) tracking a motorised flower. This assay allowed us to sample a range of movements at different temporal frequencies, and thus assess whether wing damage affected faster or slower flight manoeuvres. We show that hummingbird hawkmoths compensate for the loss in lift force mainly by increasing wing beat amplitude, yet with a significant contribution of wing beat frequency. We did not observe any effects of wing damage on flight manoeuvrability at either high or low temporal frequencies.


Sign in / Sign up

Export Citation Format

Share Document