scholarly journals Characterizing the reproduction number of epidemics with early subexponential growth dynamics

2016 ◽  
Vol 13 (123) ◽  
pp. 20160659 ◽  
Author(s):  
Gerardo Chowell ◽  
Cécile Viboud ◽  
Lone Simonsen ◽  
Seyed M. Moghadas

Early estimates of the transmission potential of emerging and re-emerging infections are increasingly used to inform public health authorities on the level of risk posed by outbreaks. Existing methods to estimate the reproduction number generally assume exponential growth in case incidence in the first few disease generations, before susceptible depletion sets in. In reality, outbreaks can display subexponential (i.e. polynomial) growth in the first few disease generations, owing to clustering in contact patterns, spatial effects, inhomogeneous mixing, reactive behaviour changes or other mechanisms. Here, we introduce the generalized growth model to characterize the early growth profile of outbreaks and estimate the effective reproduction number, with no need for explicit assumptions about the shape of epidemic growth. We demonstrate this phenomenological approach using analytical results and simulations from mechanistic models, and provide validation against a range of empirical disease datasets. Our results suggest that subexponential growth in the early phase of an epidemic is the rule rather the exception. Mechanistic simulations show that slight modifications to the classical susceptible–infectious–removed model result in subexponential growth, and in turn a rapid decline in the reproduction number within three to five disease generations. For empirical outbreaks, the generalized-growth model consistently outperforms the exponential model for a variety of directly and indirectly transmitted diseases datasets (pandemic influenza, measles, smallpox, bubonic plague, cholera, foot-and-mouth disease, HIV/AIDS and Ebola) with model estimates supporting subexponential growth dynamics. The rapid decline in effective reproduction number predicted by analytical results and observed in real and synthetic datasets within three to five disease generations contrasts with the expectation of invariant reproduction number in epidemics obeying exponential growth. The generalized-growth concept also provides us a compelling argument for the unexpected extinction of certain emerging disease outbreaks during the early ascending phase. Overall, our approach promotes a more reliable and data-driven characterization of the early epidemic phase, which is important for accurate estimation of the reproduction number and prediction of disease impact.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Hiroaki Murayama ◽  
Taishi Kayano ◽  
Hiroshi Nishiura

Abstract Background In Japan, a part of confirmed patients’ samples have been screened for the variant of concern (VOC), including the variant alpha with N501Y mutation. The present study aimed to estimate the actual number of cases with variant alpha and reconstruct the epidemiological dynamics. Methods The number of cases with variant alpha out of all PCR confirmed cases was estimated, employing a hypergeometric distribution. An exponential growth model was fitted to the growth data of variant alpha cases over fourteen weeks in Tokyo. Results The weekly incidence with variant alpha from 18–24 January 2021 was estimated at 4.2 (95% confidence interval (CI): 0.7, 44.0) cases. The expected incidence in early May ranged from 420–1120 cases per week, and the reproduction number of variant alpha was on the order of 1.5 even under the restriction of contact from January-March, 2021, Tokyo. Conclusions The variant alpha was predicted to swiftly dominate COVID-19 cases in Tokyo, and this has actually occurred by May 2021. Devising the proposed method, any country or location can interpret the virological sampling data.


2020 ◽  
Author(s):  
Md. Hasan ◽  
Akhtar Hossain ◽  
Wasimul Bari ◽  
Syed Shariful Islam

Abstract BackgroundThe outbreak of novel coronavirus disease (COVID-19), started from Wuhan, China, at the end of December 2019, hits almost the entire world. In Bangladesh, the first case was officially reported on March 8, 2020. We estimated the basic reproductive number, R0, of COVID-19 for Bangladesh using the first 65-day data of the outbreak.MethodsWith time-varying disease reporting rate, epidemic curves were estimated using the exponential growth model utilizing daily COVID-19 diagnosis data in Bangladesh from March 8 to May 11, 2020. We estimated R0 using the estimated intrinsic growth rate (γ). Serial intervals (SI) have been used from two well-known coronaviruses’ outbreaks, SARS and MERS; and the early estimate of SI of COVID-19 in Wuhan, China.ResultsThe COVID-19 epidemic in Bangladesh followed an exponential growth model. We found the R0 to be 1.84 [95% CI: 1.82–1.86], 1.82 [95% CI: 1.81–1.84], and 1.94 [95% CI: 1.92–1.96], for MERS, COVID-19, and SARS SI respectively without adjusting reporting rate. With the adjusted reporting rate, R0 reduced to 1.63 [95% CI: 1.62–1.65], 1.62 [95% CI: 1.61–1.64], and 1.71 [95% CI: 1.70–1.73] for a five-fold increase. Inverse association between the reporting rate and the basic reproduction number was observed.ConclusionThe R0 was found to be 1.87 for existing cases and was reduced to 1.65 for the five-fold increase of the early reporting rate. Findings suggest a continued COVID-19 outbreak in Bangladesh and immediate steps need to be taken to control.


2008 ◽  
Vol 158 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Juergen Honegger ◽  
Sanna Zimmermann ◽  
Tsambika Psaras ◽  
Manfred Petrick ◽  
Michel Mittelbronn ◽  
...  

ObjectiveRecent observational studies have established progression and recurrence rates of pituitary adenomas. However, it is still unknown how individual pituitary adenomas grow over years and whether growth kinetics follow a distinct growth model. The objective of this study was to define a growth model for non-functioning pituitary adenomas.MethodsFifteen patients who had five or more serial high-quality examinations with magnetic resonance images or computerized tomography scans were identified among 216 patients with non-functioning pituitary adenomas. Tumour volumes were assessed using a stereological method based on the Cavalieri principle. Tumour growth during the observation period was analysed and different growth models were fitted to the data.ResultsFifteen pituitary adenomas (12 recurrent tumours and 3 newly diagnosed tumours) were longitudinally observed during a median observation period of 7.4 years (range: 2.3–11.9 years). Growth kinetics could be described either by an exponential growth model (nine patients) or by a logistic model (five patients) with initial exponential growth followed by deceleration of growth. One tumour remained unchanged in size during the observation period. None of the adenomas showed accelerated growth during the observation period. Overall, the linear growth model was not suitable to describe the growth kinetics of non-functioning pituitary adenomas.ConclusionsOur study shows that growth of pituitary adenomas can be described by distinct growth models. Knowledge of growth dynamics has implications for clinical practice and helps to adjust scanning protocols for follow-up investigations.


2016 ◽  
Vol 13 (121) ◽  
pp. 20160288 ◽  
Author(s):  
Pieter Trapman ◽  
Frank Ball ◽  
Jean-Stéphane Dhersin ◽  
Viet Chi Tran ◽  
Jacco Wallinga ◽  
...  

When controlling an emerging outbreak of an infectious disease, it is essential to know the key epidemiological parameters, such as the basic reproduction number R 0 and the control effort required to prevent a large outbreak. These parameters are estimated from the observed incidence of new cases and information about the infectious contact structures of the population in which the disease spreads. However, the relevant infectious contact structures for new, emerging infections are often unknown or hard to obtain. Here, we show that, for many common true underlying heterogeneous contact structures, the simplification to neglect such structures and instead assume that all contacts are made homogeneously in the whole population results in conservative estimates for R 0 and the required control effort. This means that robust control policies can be planned during the early stages of an outbreak, using such conservative estimates of the required control effort.


This study presents a deterministic model for domestic radicalization process in Kenya and uses the model to assess the effect of efforts of good clergies, rehabilitation centers and legal system in lowering radicalization burden. The likelihood of other drivers of radicalization to individuals who are not religious fanatics was considered. The possibility of individuals in rehabilitated subclass quitting back to violent class was considered. The equilibrium points were computed, their stabilities investigated and important thresholds determining the progression of the radicalization computed. The sensitivity analysis of control reproduction number indicates that high intervention rates hold is likely to reduce the radicalization burden. The results indicate that use of good clergies to assist individuals’ radicalized but peaceful, to recover is the best intervention strategy. Estimated numerical results and simulations were carried to confirm analytical results.


2020 ◽  
Vol 111 (8) ◽  
pp. 629-638
Author(s):  
A. Tejera-Vaquerizo ◽  
J. Cañueto ◽  
A. Toll ◽  
J. Santos-Juanes ◽  
A. Jaka ◽  
...  

2006 ◽  
Vol 4 (12) ◽  
pp. 155-166 ◽  
Author(s):  
Gerardo Chowell ◽  
Hiroshi Nishiura ◽  
Luís M.A Bettencourt

The reproduction number, , defined as the average number of secondary cases generated by a primary case, is a crucial quantity for identifying the intensity of interventions required to control an epidemic. Current estimates of the reproduction number for seasonal influenza show wide variation and, in particular, uncertainty bounds for for the pandemic strain from 1918 to 1919 have been obtained only in a few recent studies and are yet to be fully clarified. Here, we estimate using daily case notifications during the autumn wave of the influenza pandemic (Spanish flu) in the city of San Francisco, California, from 1918 to 1919. In order to elucidate the effects from adopting different estimation approaches, four different methods are used: estimation of using the early exponential-growth rate (Method 1), a simple susceptible–exposed–infectious–recovered (SEIR) model (Method 2), a more complex SEIR-type model that accounts for asymptomatic and hospitalized cases (Method 3), and a stochastic susceptible–infectious–removed (SIR) with Bayesian estimation (Method 4) that determines the effective reproduction number at a given time t . The first three methods fit the initial exponential-growth phase of the epidemic, which was explicitly determined by the goodness-of-fit test. Moreover, Method 3 was also fitted to the whole epidemic curve. Whereas the values of obtained using the first three methods based on the initial growth phase were estimated to be 2.98 (95% confidence interval (CI): 2.73, 3.25), 2.38 (2.16, 2.60) and 2.20 (1.55, 2.84), the third method with the entire epidemic curve yielded a value of 3.53 (3.45, 3.62). This larger value could be an overestimate since the goodness-of-fit to the initial exponential phase worsened when we fitted the model to the entire epidemic curve, and because the model is established as an autonomous system without time-varying assumptions. These estimates were shown to be robust to parameter uncertainties, but the theoretical exponential-growth approximation (Method 1) shows wide uncertainty. Method 4 provided a maximum-likelihood effective reproduction number 2.10 (1.21, 2.95) using the first 17 epidemic days, which is consistent with estimates obtained from the other methods and an estimate of 2.36 (2.07, 2.65) for the entire autumn wave. We conclude that the reproduction number for pandemic influenza (Spanish flu) at the city level can be robustly assessed to lie in the range of 2.0–3.0, in broad agreement with previous estimates using distinct data.


Sign in / Sign up

Export Citation Format

Share Document