scholarly journals Inferring simple but precise quantitative models of human oocyte and early embryo development

2021 ◽  
Vol 18 (182) ◽  
pp. 20210475
Author(s):  
Brian D. Leahy ◽  
Catherine Racowsky ◽  
Daniel Needleman

Macroscopic, phenomenological models are useful as concise framings of our understandings in fields from statistical physics to finance to biology. Constructing a phenomenological model for development would provide a framework for understanding the complicated, regulatory nature of oogenesis and embryogenesis. Here, we use a data-driven approach to infer quantitative, precise models of human oocyte maturation and pre-implantation embryo development, by analysing clinical in-vitro fertilization (IVF) data on 7399 IVF cycles resulting in 57 827 embryos. Surprisingly, we find that both oocyte maturation and early embryo development are quantitatively described by simple models with minimal interactions. This simplicity suggests that oogenesis and embryogenesis are composed of modular processes that are relatively siloed from one another. In particular, our analysis provides strong evidence that (i) pre-antral follicles produce anti-Müllerian hormone independently of effects from other follicles, (ii) oocytes mature to metaphase-II independently of the woman’s age, her BMI and other factors, (iii) early embryo development is memoryless for the variables assessed here, in that the probability of an embryo transitioning from its current developmental stage to the next is independent of its previous stage. Our results both provide insight into the fundamentals of oogenesis and embryogenesis and have implications for the clinical IVF.

2020 ◽  
Vol 21 (10) ◽  
pp. 3581
Author(s):  
Anthony Estienne ◽  
Adeline Brossaud ◽  
Maxime Reverchon ◽  
Christelle Ramé ◽  
Pascal Froment ◽  
...  

Some evidence shows that body mass index in humans and extreme weights in animal models, including avian species, are associated with low in vitro fertilization, bad oocyte quality, and embryo development failures. Adipokines are hormones mainly produced and released by white adipose tissue. They play a key role in the regulation of energy metabolism. However, they are also involved in many other physiological processes including reproductive functions. Indeed, leptin and adiponectin, the most studied adipokines, but also novel adipokines including visfatin and chemerin, are expressed within the reproductive tract and modulate female fertility. Much of the literature has focused on the physiological and pathological roles of these adipokines in ovary, placenta, and uterine functions. The purpose of this review is to summarize the current knowledge regarding the involvement of leptin, adiponectin, visfatin, and chemerin in the oocyte maturation, fertilization, and embryo development in both mammals and birds.


2015 ◽  
Vol 27 (1) ◽  
pp. 203
Author(s):  
I. Lindgren ◽  
P. Humblot ◽  
D. Laskowski ◽  
Y. Sjunnesson

Dairy cow fertility has decreased during the last decades, and much evidence indicates that metabolic disorders are an important part of this decline. Insulin is a key factor in the metabolic challenge during the transition period that coincides with the oocyte maturation and may therefore have an impact on the early embryo development. The aim of this study was to test the effect of insulin during oocyte maturation on early embryo development by adding insulin during the oocyte maturation in vitro. In this study, abattoir-derived bovine ovaries were used and cumulus-oocyte complexes (n = 991) were in vitro matured for 22 h according to standard protocols. Insulin was added during maturation in vitro as follows: H (10 µg mL–1 of insulin), L (0.1 µg mL–1 of insulin), or Z (0 µg mL–1 of insulin). After maturation, oocytes were removed and fixed in paraformaldehyde before staining. Click-it TUNEL assay (Invitrogen, Stockholm, Sweden) was used for apoptotic staining and DRAQ5 (BioNordika, Stockholm, Sweden) for nuclear staining (n = 132). Cumulus-oocyte complexes were evaluated using laser scanning confocal microscope (Zeiss LSM 510, Zeiss, Oberkochen, Germany). Five levels of scans were used to assess oocyte maturation (MII stage) and apoptosis. Because of incomplete penetration of the TUNEL stain (3–5 layers of cumulus cells), only the outer 2 layers of the cumulus complex were investigated regarding apoptosis. Apoptotic index was calculated as apoptotic cells/total cells visualised. Remaining oocytes were fertilized and cultured in vitro until Day 8. Day 7 and Day 8 blastocyst formation was assessed as well as blastocyst stage and grade. Effect of insulin treatment on variables was analysed by ANOVA following arc sin √p transformation. Post-ANOVA comparisons between H+L group v. Z were performed by using the contrast option under GLM (Scheffé test). Results are presented as least squares means ± s.e. P-values ≤ 0.05 were considered as statistically significant. Insulin treatment during oocyte maturation in vitro had no significant effect on oocyte nuclear maturation or apoptotic index of the cumulus cells (Z: 0.052 ± 0.025, L: 0.039 ± 0.016, H: 0.077 ± 0.044, P > 0.05). No effect was seen on cleavage rates (Z: 0.85 ± 0.02, L: 0.85 ± 0.02, H: 0.89 ± 0.03, P > 0.05), but insulin treatment significantly decreased Day 7 rates from fertilized oocytes (Z: 0.19 ± 0.02, L: 0.14 ± 0.02, H: 0.12 ± 0.02, P < 0.05). This study also showed a significantly retarded developmental stage and decreased grade of blastocysts in insulin-treated groups taken together when compared with the control group (P < 0.05). In this study, no effect of insulin supplementation during in vitro maturation was seen on bovine oocyte maturation and apoptosis of cumulus cells, but blastocyst formation and development were negatively affected. Further studies are needed for understanding the relationship between the addition of insulin during maturation in vitro and impaired blastocyst formation. Insulin is a common supplement in the first phase of the first in vitro maturation medium for pig oocytes and is believed to have a beneficial effect on this species.Funding was received from Stiftelsen Nils Lagerlöfs Fond H12–0051-NLA.


2009 ◽  
Vol 21 (6) ◽  
pp. 805 ◽  
Author(s):  
Ngoc Tan Nguyen ◽  
David Pei-Cheng Lin ◽  
Shih-Ying Yen ◽  
Jung-Kai Tseng ◽  
Jui-Fen Chuang ◽  
...  

In the present study, we investigated the effects of the Sonic hedgehog (Shh) protein on porcine oocyte maturation and early embryo development. Immunohistochemistry showed activation of Shh signalling in cumulus–oocyte complexes (COCs), as reflected by Patched (Ptc), Smoothened (Smo) and Gli1 expression in oocytes, cumulus cells and granulosa cells, particularly those of small follicles (<2 mm in diameter). Western blot analysis showed Smo expression in COCs and in denuded oocytes derived from small and medium (3–7 mm)-sized follicles. Small follicles contained the highest concentration of Shh in follicular fluid compared with medium-sized and large (>7 mm in diameter) follicles. Supplementation with Shh (0.5 or 1 μg mL–1) enhanced oocyte maturation compared with the control group (92.4% and 90.4% v. 81.9%, respectively; P < 0.05). This effect was reversed by the simultaneous addition of cyclopamine (1–2 μm), an Shh inhibitor. Similar to intact COCs, denuded COCs showed enhanced maturation following Shh supplementation. Furthermore, cyclin B1 content, extracellular signal-regulated kinase 1/2 phosphorylation, intracellular calcium release, blastocyst rate and total cell numbers were greater (P < 0.05) in oocytes matured in the presence of 0.5 and 1 μg mL–1 Shh compared with control oocytes. The findings of the present study provide the first evidence that the Shh signalling pathway is active, or at least partially activated, in the porcine ovary and is likely to promote oocyte cytoplasmic and nuclear maturation, as well as subsequent in vitro development, although the underlying mechanisms remain to be elucidated.


Zygote ◽  
2018 ◽  
Vol 26 (4) ◽  
pp. 261-269
Author(s):  
Xia-Guang Duan ◽  
Zai-Qing Huang ◽  
Chun-Guang Hao ◽  
Xiao-Jun Zhi ◽  
Xiao-Bing Qi ◽  
...  

SummaryPropofol is a intravenous anaesthetic most commonly used in ultrasound oocyte retrieval. We studied if the use of propofol had an effect on mouse oocyte maturation, pregnancy, childbirth and progeny and investigated the correlation between propofol side effects and reproductive performance in mice. There was no statistical difference in mating, pregnancy, childbirth, litter size, the number of stillbirths and survival between each group (P>0.05). Propofol also had no effect on polar body extrusion in oocyte maturation as well as on pronucleus formation and, subsequently, early embryo development (P>0.05). An increased concentration of propofol had no effect on this result, although propofol at more than 0.01 mg/ml reduced polar body extrusion. Different concentrations of propofol had no effect on oocyte culture in vitro, pronucleus formation and early embryo development.


Sign in / Sign up

Export Citation Format

Share Document