scholarly journals The absorption of X-rays

Introduction . —Previous to the discovery of the behaviour of X-rays with regard to crystals, the most homogeneous radiation obtainable was that of the characteristic radiation of an element which is excited when that element is exposed to X-radiation of suitable hardness. These characteristic radiations are now found, however, by the new method of analysis, to be constituted of a number of radiations of different wave-lengths. Moseley, shortly after the discovery of the reflection of X-rays, showed that the characteristic radiations of most of the metals he examined consisted of two prominent wave-lengths; Bragg later found that, in the case of rhodium, palladium and silver, each of these lines could be further resolved into two components. Hence the spectra of the characteristic radiation of the K series of these elements consist of at least four different wave-lengths. The analysis of a beam of X-rays into its constituent radiations by reflection at a crystal face provides a means, therefore, of obtaining radiation of a definite wave length and of such intensity as to enable its absorption coefficient in different materials to be accurately measured. Bragg and Pierce have already measured the absorption coefficients of the two most prominent lines in the spectra of the elements Rh, Pd and Ag, in a number of metals. To make the absorption coefficient more directly comparable with other atomic characteristics, they gave their results in the form of atomic absorption coefficients: the atomic absorption coefficient expresses the proportion of the energy of an X-ray pencil which is absorbed in crossing a surface on which lies one atom to every square centimetre. The ordinary mass absorption coefficient can be calculated from this quantity by dividing it by the mass of the absorbing atom. The experimental results showed that the ratio of two absorption coefficients is independent of the wave-length of the radiation over considerable ranges, a result previously deduced by Barkla from his experiments; also, that the atomic absorption coefficient is proportional to the fourth power of the atomic number of the absorber.

Author(s):  
John Read ◽  
John Cunningham McLennan

In a previous paper an account has been given of the measurement of the absorption of monochromatic X-ray beams of wave-length in the region 50 to 20 x -units, in carbon and aluminium. The relation of the measured coefficient of absorption to the wave-Iength did not differ from that predicted by the Klein-Nishina formula by more than 1%. The method used in that experiment has been improved, and used to measure the absorption coefficients of lead, tin, copper, and iron for similar monochromatic beams. Because lead has been used very extensively for absorption measurements the primary aim has been to measure as accurately as possible the dependence of its absorption coefficient on the wave-length of the radiation. It has not been possible to make such accurate measurements on tin, copper, and iron, but enough data has been obtained to determine the variation of the photoelectric absorption coefficient per electron with the atomic number of the absorbing element, with fair accuracy, for radiation in this region of wave-lengths. Since these absorption coefficients may find considerable application, it is considered well to give a more detailed account of the method of measurement, so that an independent judgment of their reliability may be made.


Author(s):  
Robert E. Ogilvie

The search for an empirical absorption equation begins with the work of Siegbahn (1) in 1914. At that time Siegbahn showed that the value of (μ/ρ) for a given element could be expressed as a function of the wavelength (λ) of the x-ray photon by the following equationwhere C is a constant for a given material, which will have sudden jumps in value at critial absorption limits. Siegbahn found that n varied from 2.66 to 2.71 for various solids, and from 2.66 to 2.94 for various gases.Bragg and Pierce (2) , at this same time period, showed that their results on materials ranging from Al(13) to Au(79) could be represented by the followingwhere μa is the atomic absorption coefficient, Z the atomic number. Today equation (2) is known as the “Bragg-Pierce” Law. The exponent of 5/2(n) was questioned by many investigators, and that n should be closer to 3. The work of Wingardh (3) showed that the exponent of Z should be much lower, p = 2.95, however, this is much lower than that found by most investigators.


Author(s):  
Werner P. Rehbach ◽  
Peter Karduck

In the EPMA of soft x rays anomalies in the background are found for several elements. In the literature extremely high backgrounds in the region of the OKα line are reported for C, Al, Si, Mo, and Zr. We found the same effect also for Boron (Fig. 1). For small glancing angles θ, the background measured using a LdSte crystal is significantly higher for B compared with BN and C, although the latter are of higher atomic number. It would be expected, that , characteristic radiation missing, the background IB (bremsstrahlung) is proportional Zn by variation of the atomic number of the target material. According to Kramers n has the value of unity, whereas Rao-Sahib and Wittry proposed values between 1.12 and 1.38 , depending on Z, E and Eo. In all cases IB should increase with increasing atomic number Z. The measured values are in discrepancy with the expected ones.


Energy may be removed from a beam of γ -rays traversing matter by two distinct mechanisms. A quantum of radiation may be scattered by an electron out of its initial direction with change of wave-length, or it may be absorbed completely by an atom and produce a photoelectron. The total absorption coefficient, μ, is defined by the equation d I/ dx = -μI, and is the sum of the coefficients σ and τ referring respectively to the scattering and to the photoelectric effect. For radiation of low frequency, such as X-rays, the photoelectric absorption is very much more important than the absorption due to scattering, and many experiments have shown that the photoelectric absorption per atom varies as the fourth power of the atomic number and approximately as the cube of the wave-length. For radiation of high frequency, such as the more penetrating γ -rays, the photoelectric effect is, even for the heavy elements, smaller than the scattering absorption; and, since the scattering from each electron is always assumed to be independent of the atom from which it is derived, it is most convenient to divide μ. defined above by the number of electrons per unit volume in the material and to obtain μ e the absorption coefficient per electron.


1990 ◽  
Vol 34 ◽  
pp. 325-335 ◽  
Author(s):  
Steve J. Chipera ◽  
David L. Bish

AbstractThe mass absorption coefficient is a useful parameter for quantitative characterization of materials. If the chemical composition of a sample is known, the mass absorption coefficient can be calculated directly. However, the mass absorption coefficient must be determined empirically if the chemical composition is unknown. Traditional methods for determining the mass absorption coefficient involve measuring the transmission of monochromatic X-rays through a sample of known thickness and density. Reynolds (1963,1967), however, proposed a method for determining the mass absorption coefficient by measuring the Compton or inelastic X-ray scattering from a sample using Mo radiation on an X-ray fluorescence spectrometer (XRF). With the recent advances in solid-state detectors/electronics for use with conventional powder diffractometers, it is now possible to readily determine mass absorption coefficients during routine X-ray diffraction (XRD) analyses.Using Cu Kα radiation and Reynolds’ method on a Siemens D-500 diffractometer fitted with a Kevex Si(Li) solid-state detector, we have measured the mass absorption coefficients of a suite of minerals and pure chemical compounds ranging in μ/ρ from graphite to Fe-metal (μ/ρ = 4.6-308 using Cu Kα radiation) to ±4.0% (lσ). The relationship between the known mass absorption coefficient and the inverse count rate is linear with a correlation coefficient of 0.997. Using mass absorption coefficients, phase abundances can be determined during quantitative XRD analysis without requiring the use of an internal standard, even when an amorphous component is present.


That a change of wave-length occurs in X-ray scattering was first indicated by absorption measurements with the ionisation chamber, which showed that the absorption coefficient of a light element like aluminium was slightly greater for the scattered than for the primary X-rays. Later more conclusive and direct evidence was obtained when spectrometric analysis of the scattered X-rays was made first by the ionisation and afterwards by the photographic method. This analysis disclosed the existence of an unshifted as well as the shifted line, and showed also that the latter becomes relatively more prominent with diminishing wave-length and lower atomic number of the scattering element. After the main features of the Compton effect were established by means of spectrometric measurements, however, absorption measurements with the ionisation method have again been employed for a detailed study of the phenomenon, for such measurements are much quicker than the spectrum experiments, where the final energy available is much smaller on account of the double scattering involved. As mentioned above, the absorption measurements were based on the slight increase in the absorption coefficient of a light element when the wave-length changes from the unmodified to the modified value. The much larger and sudden diminution in absorption of X-rays when the frequency is altered from the short to the long wave-length side of the critical K-absorption limit of the element used as a filter, furnishes us with an easy and convenient method of exhibiting the wave-length change in X-ray scattering. In the present paper will be described a photographic wedge photometer based on this principle, which enables the characteristics of the Compton effect to be readily observed. It may be pointed out that the same idea could no doubt be utilised also in connection with the ionisation measurements of the Compton effect.


1926 ◽  
Vol 45 (1) ◽  
pp. 48-58
Author(s):  
Wm. H. Watson

The first experiments on this subject were suggested by the absorption effects associated with the “J” phenomenon. In a comparison of the absorbability in aluminium and in copper of the radiation emitted in one direction from an X-ray tube, it is found that in many cases, as the tube is hardened and a certain value of the mass-absorption coefficient reached, there is a sudden increase in the absorption by aluminium. Since the radiation is not strictly homogeneous, and since the above effect does not invariably take place, it is evident that the phenomenon is not to be explained simply in terms of a “J” series characteristic radiation similar to K and L characteristic radiations as regards the manner of its excitation. It is evident that certain critical conditions must obtain before the phenomenon occurs, and on account of the abruptness of the change it appears as though the whole wave-length range of the radiation were affected in respect of absorption by aluminium. This seems to be further substantiated by the fact that the discontinuous character of the change in absorption is preserved with a beam which is much more heterogeneous.


1982 ◽  
Vol 37 (5) ◽  
pp. 474-484
Author(s):  
D. Lambert ◽  
C. Malgrange

The integrated reflection power for perfect crystals has been measured with neutrons and X- Rays for different crystals in a wide range of absorption coefficients and values of |μh/μ0| where μh is the h Fourier term of the absorption coefficient. The influence of Compton effect and tem­perature factor is discussed. The results are compared to Kato’s theoretical values.


Much experimental work has been directed towards the determination of the absorption coefficients of X-rays in elements—especially with respect to the relation existing between the absorption coefficient and the wave-length—owing to the importance of the bearing of the results on the theories of electromagnetic radiation and atomic structure. Nevertheless, on account of the experimental difficulties encountered in this work, serious discrepancies appear among the results of different observers. The method described below appears to offer a reliable and accurate means of measuring the absorption coefficients of homogeneous X-rays in various materials and the wave-lengths of the rays employed. Among the difficulties experienced in the experimental arrangements, two of the chief are:— ( a ) The heterogeneity of the source. ( b ) The variations in intensity of the source.


Author(s):  
L. H. Gray

No satisfactory formula has so far been derived theoretically for the photoelectric absorption of X-rays and γ-rays. The empirical lawhas hitherto been generally accepted as giving approximately the variation of the photoelectric absorption coefficient per electron, with atomic numberZand wave length λ for X-rays of wave length greater than 100 X.U., and the validity of this law has often been assumed for γ-rays also.


Sign in / Sign up

Export Citation Format

Share Document