Transfer of the unsaturated helium II film

The critical transfer rate of the unsaturated helium II film has been measured on surfaces of glass and german silver by a heat conduction method. It is found that a considerable reduction of the transfer rate occurs when the vapour pressure over the film is decreased only slightly below the saturation value. At a given percentage of the saturation pressure, there exists a critical temperature above which film flow will not take place. This critical temperature is shown to be sharply defined, and to decrease with decreasing percentage satura­tion. At the full saturation pressure the transfer rate is markedly different on the various surfaces used, but as the vapour pressure over the film decreases the flow rate tends to become the same for all surfaces. The critical temperature for onset of superfluidity is also independent of the substrate. The temperature dependence of the transfer rate is different from that for the saturated film, but very similar to the variation found in the flow of liquid through channels of width less than that of the saturated film.

Author(s):  
Yoshiyuki Iso ◽  
Xi Chen

Gas-liquid two-phase flows on the wall like liquid film flows, which are the so-called wetted wall flows, are observed in many industrial processes such as absorption, desorption, distillation and others. For the optimum design of packed columns widely used in those kind of processes, the accurate predictions of the details on the wetted wall flow behavior in packing elements are important, especially in order to enhance the mass transfer between the gas and liquid and to prevent flooding and channeling of the liquid flow. The present study focused on the effects of the change of liquid flow rate and the wall surface texture treatments on the characteristics of wetted wall flows which have the drastic flow transition between the film flow and rivulet flow. In this paper, the three-dimensional gas-liquid two-phase flow simulation by using the volume of fluid (VOF) model is applied into wetted wall flows. Firstly, as one of new interesting findings in this paper, present results showed that the hysteresis of the flow transition between the film flow and rivulet flow arose against the increasing or decreasing stages of the liquid flow rate. It was supposed that this transition phenomenon depends on the history of flow pattern as the change of curvature of interphase surface which leads to the surface tension. Additionally, the applicability and accuracy of the present numerical simulation were validated by using the existing experimental and theoretical studies with smooth wall surface. Secondary, referring to the texture geometry used in an industrial packing element, the present simulations showed that surface texture treatments added on the wall can improve the prevention of liquid channeling and can increase the wetted area.


1989 ◽  
Vol 136 (6) ◽  
pp. 405-409 ◽  
Author(s):  
M. I. Aizenberg ◽  
E. V. Fedoseev ◽  
S. S. Travnikov ◽  
A. V. Davydov ◽  
B. F. Myasoedov

2015 ◽  
Vol 10 (1) ◽  
pp. 42-49
Author(s):  
Aleksandr Pavlenko ◽  
Oleg Volodin ◽  
Vladimir Serdyukov

Results of experimental studies on hydrodynamics of the film flow of liquid nitrogen over the surface of the single elements of structured packing are presented. The effect of inclination angle of the large ribs and perforation on the zones of liquid film spreading over the corrugated surface with microtexture at different Reynolds numbers of the film is shown based on a comparison of experimental data. It is shown that the angle of large rib inclination has a significant influence on redistribution of the local flow rate of liquid flowing on the surface with complex geometry. Analysis of results of the high-speed video revealed that in a vicinity of the vertical lateral edges of corrugated plates, the intense rivulet flows are formed, including those with separation from the film flow surface. This negative factor can lead to significant liquid accumulation and flow near the vertical edges of the structured packing and on the inner wall of the heat exchanging apparatuses and, finally, to a significant increase in the degree of maldistribution of local liquid flow rate over the crosssection, for instance, of the distillation columns.


Author(s):  
A. A. Adegbola ◽  
O. A. Adeaga ◽  
A. O. Babalola ◽  
A. O. Oladejo ◽  
A. S. Alabi

Air conditioning systems have condensers that remove unwanted heat from the refrigerant and transfer the heat outdoors. The optimization of the global exploit of heat exchanging devices is still a burdensome task due to different design parameters involved. There is need for more and substantial research into bettering cooling channel materials so as to ensure elevated performance, better efficiency, greater accuracy, long lasting and low cost heat exchanging. The aim of this research work is to improve the heat transfer rate of air conditioning condenser by optimizing materials for different tube diameters. Simulations using thermal analysis and Computational Fluid Dynamic (CFD) analysis were carried out to determine the better material and fluid respectively. The analysis was done using Analysis System software. Different parameters were calculated from the results obtained and graphs are plotted between various parameters such as heat flux, static pressure, velocity, mass flow rate and total heat transfer. The materials used for CFD analysis are R12 and R22, and for thermal analysis are copper and aluminium. From the CFD analysis, the result shows that R22 has more static pressure, velocity, mass flow rate and total heat transfer than R12 at condenser tube diameter 6 mm. In thermal investigation, the heat flux is more for copper material at condenser tube diameter 6 mm. Copper offers maximum heat flux. Also, refrigerant R22 scores maximum for the heat transfer criteria, but cannot be recommended due to toxicity


2005 ◽  
Vol 2005 (1) ◽  
pp. 36-44 ◽  
Author(s):  
R. Ben-Mansour ◽  
L. Al-Hadhrami

Internal cooling is one of the effective techniques to cool turbine blades from inside. This internal cooling is achieved by pumping a relatively cold fluid through the internal-cooling channels. These channels are fed through short channels placed at the root of the turbine blade, usually called entrance region channels. The entrance region at the root of the turbine blade usually has a different geometry than the internal-cooling channel of the blade. This study investigates numerically the fluid flow and heat transfer in one-pass smooth isothermally heated channel using the RNGk−εmodel. The effect of Reynolds number on the flow and heat transfer characteristics has been studied for two mass flow rate ratios (1/1and1/2) for the same cooling channel. The Reynolds number was varied between10 000and50 000. The study has shown that the cooling channel goes through hydrodynamic and thermal development which necessitates a detailed flow and heat transfer study to evaluate the pressure drop and heat transfer rates. For the case of unbalanced mass flow rate ratio, a maximum difference of8.9% in the heat transfer rate between the top and bottom surfaces occurs atRe=10 000while the total heat transfer rate from both surfaces is the same for the balanced mass flow rate case. The effect of temperature-dependent property variation showed a small change in the heat transfer rates when all properties were allowed to vary with temperature. However, individual effects can be significant such as the effect of density variation, which resulted in as much as9.6% reduction in the heat transfer rate.


1987 ◽  
Vol 99 ◽  
Author(s):  
A. Mascarenhas ◽  
H. Katayama-Yoshlda ◽  
S. Geller ◽  
J. I. Pánkové ◽  
S. K. Debt

ABSTRACTA Raman spectroscopie investigation of specimens of superconducting YBa2Cu3O7−x and semiconducting YBa2Cu3O6+x indicates that in the range 100 to 700 cm-1, the characteristic lines of the superconductor at 13 K, are at 150, 338, 441, 507, 590, and 644 cm-1. Comparison of the Ranan spectra of the superconductor and the semiconductor indicates a mode stiffening of the pair at 338 and 441 cm-1, hut a mode softening of the pair at 507 and 590 cm-1. A factor group analysis leads to a tentative assignment of the Raman and infrared allowed modes. At temperatures 12K < T < 180K the Raman spectra of the superconductor indicate that the phonon mode at 338 cm-1 has an anomalous temperature dependence below the superconducting critical temperature (Tc).


Sign in / Sign up

Export Citation Format

Share Document