Anomalies in silicon carbide polytypes

Frank’s dislocation theory of the origin of polytypism received direct experimental support from the observation of a correlation between the step height of growth spirals on silicon carbide polytypes and the heights of their X-ray unit cells (Verma 1952, 1957). A detailed X-ray diffraction and microscopic investigation of silicon carbide structures has revealed anomalies that cannot be explained on the dislocation theory. Three new unusual polytypes 36 H a , 36 H b and 90 R are described in detail. The structures 36 H a and 36 H b were found in a single crystal piece and have identical lattices with a = b = 3.078 Å and c = 90.65 Å. Both structures belong to the space group P 3 m . The polytype 90 R belongs to the space group R 3 m with hexagonal unit cell dimensions a = b = 3.078 Å, c = 226.6 Å. The detailed atomic structure of type 90 R has been worked out and has a Zhdanov symbol [(23) 4 3322] 3 . It is shown that the polytypes 36 H a and 36 H b are based on the 6 H phase while type 90 R is based on the 15 R phase. The creation of such polytypes requires a screw dislocation with a Burgers vector which is an integral multiple of the c spacing of the basic structure, and is therefore not understood on Frank’s theory. A surface examination of the faces of these crystals does not reveal any growth spirals, showing that they have not grown by the dislocation mechanism. The growth of the different polytypes of silicon carbide is discussed and it appears that screw dislocations determine the surface structure but not the contents of the unit cell and therefore the cause of polytypism needs to be reconsidered.

Author(s):  
Thomas A. Whittle ◽  
Siegbert Schmid ◽  
Christopher J. Howard

Possibilities for `simple' octahedral tilting in the hexagonal and tetragonal tungsten bronzes (HTB and TTB) have been examined, making use of group theory as implemented in the computer programISOTROPY. For HTB, there is one obvious tilting pattern, leading to a structure in space groupP63/mmc. This differs from the space groupP63/mcmfrequently quoted from X-ray studies – these studies have in effect detected only displacements of the W cations from the centres of the WO6octahedra. The correct space group, taking account of both W ion displacement and the octahedral tilting, isP6322 – structures in this space group and matching this description have been reported. A second acceptable tilting pattern has been found, leading to a structure inP6/mmmbut on a larger `2 × 2 × 2' unit cell – however, no observations of this structure have been reported. For TTB, a search at the special points of the Brillouin zones revealed only one comparable tilting pattern, in a structure with space-group symmetryI4/mon a `21/2 × 21/2by 2' unit cell. Given several literature reports of larger unit cells for TTB, we conducted a limited search along the lines of symmetry and found structures with acceptable tilt patterns inBbmmon a `21/22 × 21/2 × 2' unit cell. A non-centrosymmetric version has been reported in niobates, inBbm2 on the same unit cell.


2021 ◽  
pp. 1-3
Author(s):  
J. Maixner ◽  
J. Ryšavý

X-ray powder diffraction data, unit-cell parameters, and space group for tetrazene nitrate monohydrate, C2H9N11O4, are reported [a = 5.205(1) Å, b = 13.932(3) Å, c = 14.196(4) Å, β = 97.826(3)°, unit-cell volume V = 1019.8(4) Å3, Z = 4, and space group P21/c]. All measured lines were indexed and are consistent with the P21/c space group. No detectable impurities were observed.


Author(s):  
Fang Lu ◽  
Bei Zhang ◽  
Yong Liu ◽  
Ying Song ◽  
Gangxing Guo ◽  
...  

Phytases are phosphatases that hydrolyze phytates to less phosphorylatedmyo-inositol derivatives and inorganic phosphate. β-Propeller phytases, which are very diverse phytases with improved thermostability that are active at neutral and alkaline pH and have absolute substrate specificity, are ideal substitutes for other commercial phytases. PhyH-DI, a β-propeller phytase fromBacillussp. HJB17, was found to act synergistically with other single-domain phytases and can increase their efficiency in the hydrolysis of phytate. Crystals of native and selenomethionine-substituted PhyH-DI were obtained using the vapour-diffusion method in a condition consisting of 0.2 Msodium chloride, 0.1 MTris pH 8.5, 25%(w/v) PEG 3350 at 289 K. X-ray diffraction data were collected to 3.00 and 2.70 Å resolution, respectively, at 100 K. Native PhyH-DI crystals belonged to space groupC121, with unit-cell parametersa = 156.84,b = 45.54,c = 97.64 Å, α = 90.00, β = 125.86, γ = 90.00°. The asymmetric unit contained two molecules of PhyH-DI, with a corresponding Matthews coefficient of 2.17 Å3 Da−1and a solvent content of 43.26%. Crystals of selenomethionine-substituted PhyH-DI belonged to space groupC2221, with unit-cell parametersa = 94.71,b= 97.03,c= 69.16 Å, α = β = γ = 90.00°. The asymmetric unit contained one molecule of the protein, with a corresponding Matthews coefficient of 2.44 Å3 Da−1and a solvent content of 49.64%. Initial phases for PhyH-DI were obtained from SeMet SAD data sets. These data will be useful for further studies of the structure–function relationship of PhyH-DI.


1996 ◽  
Vol 11 (4) ◽  
pp. 301-304
Author(s):  
Héctor Novoa de Armas ◽  
Rolando González Hernández ◽  
José Antonio Henao Martínez ◽  
Ramón Poméz Hernández

p-nitrophenol, C6H5NO3, and disophenol, C6H3I2NO3, have been investigated by means of X-ray powder diffraction. The unit cell dimensions were determined from diffractometer methods, using monochromatic CuKα1 radiation, and evaluated by indexing programs. The monoclinic cell found for p-nitrophenol was a=6.159(2) Å, b=8.890(2) Å, c=11.770(2) Å, β=103.04(2)°, Z=4, space group P21 or P2l/m, Dx=1.469 Mg/m3. The monoclinic cell found for disophenol has the dimensions a=8.886(1) Å, b=14.088(2) Å, c=8.521(1) Å, β=91.11(1)°, Z=4, space group P2, P2, Pm or P2/m, Dx=2.438 Mg/m3.


1999 ◽  
Vol 55 (4) ◽  
pp. 907-909 ◽  
Author(s):  
Jun Masuda ◽  
Tetsuya Yamaguchi ◽  
Takamasa Tobimatsu ◽  
Tetsuo Toraya ◽  
Kyoko Suto ◽  
...  

Two crystal forms of Klebsiella oxytoca diol dehydratase complexed with cyanocobalamin have been obtained and preliminary crystallographic experiments have been performed. The crystals belong to two different space groups, depending on the crystallization conditions. One crystal (form I) belongs to space group P212121 with unit-cell parameters a = 76.2, b = 122.3, c = 209.6 Å, and diffracts to 2.2 Å resolution using an X-ray beam from a synchrotron radiation source. The other crystal (form II) belongs to space group P21 with unit-cell parameters a = 75.4, b = 132.7, c = 298.8 Å, β = 91.9°, and diffracts to 3.0 Å resolution. For the purpose of structure determination, a heavy-atom derivative search was carried out and some mercuric derivatives were found to be promising. Structure analysis by the multiple isomorphous replacement method is now under way.


2017 ◽  
Vol 32 (3) ◽  
pp. 203-205
Author(s):  
Xiang Lin ◽  
Wei Ling Zhuo ◽  
Qiao Hong Du ◽  
Xi Lin Peng ◽  
Hui Li

X-ray powder diffraction data, unit-cell parameters, and space group for ertapenem side chain, C20H19N3O7S, are reported [a = 4.907(6) Å, b = 18.686(3) Å, c = 22.071(1) Å, α = γ = 90°, β = 90.759(5)°, unit-cell volume V = 2023.82 Å3, Z = 4, ρcal = 1.462 g cm−3, and space group P21/c]. All measured lines were indexed and are consistent with the P21/c space group. No detectable impurity was observed.


2013 ◽  
Vol 28 (4) ◽  
pp. 296-298
Author(s):  
R. Pažout ◽  
J. Maixner ◽  
A.S. Jones ◽  
J. Merna

X-ray powder diffraction data, unit-cell parameters, and space group for a new bis(β-diiminato) Cu(II) complex, C44H54CuN4O4, are reported [a = 8.683(3) Å, b = 11.216(3) Å, c = 11.753(4) Å, α = 66.27(3), β = 84.61(3), γ = 78.85(3), unit-cell volume V = 1027.77 Å3, Z = 1, and space group P-1]. All measured lines were indexed and are consistent with the P-1 space group. No detectable impurity was observed.


2013 ◽  
Vol 28 (3) ◽  
pp. 231-233 ◽  
Author(s):  
Li Li Zhang ◽  
Qing Qing Pan ◽  
Dan Xiao ◽  
Xiao Qing Wu ◽  
Qing Wang ◽  
...  

X-ray powder diffraction data, unit-cell parameters, and space group for deoxyschisandrin, C24H32O6, are reported [a = 13.083(3) Å, b = 19.563(9) Å, c = 8.805(6) Å, β = 90.472(0)°, unit-cell volume V = 2253.82 Å3, Z = 4, and space group P21]. All measured lines were indexed and are consistent with the P21 space group. No detectable impurity was observed.


2015 ◽  
Vol 30 (2) ◽  
pp. 182-184 ◽  
Author(s):  
R. Pažout ◽  
J. Maixner ◽  
V. Bartůněk

X-ray powder diffraction data, unit cell parameters, and space group for a new organometallic compound, lanthanum trilactate trihydrate, LaC9H21O12, are reported [a = 9.986(1) Å, b = 9.158(1) Å, c = 11.200(1) Å, α = 115.08(1), β = 117.41(1), γ = 88.61(1), unit cell volume V = 804.70 Å3, Z = 2 and space group P1]. All measured lines were indexed. No detectable impurity was observed.


2018 ◽  
Vol 33 (4) ◽  
pp. 327-329
Author(s):  
Wan Wang ◽  
Zili Suo ◽  
Lidong Liao ◽  
Hui Li

X-ray powder diffraction (XRD) data, unit-cell parameters and space group for 7-ethyl-14-nitro-camptothecin, C22H19N3O6, are reported [a = 10.987(5) Å, b = 10.941 (9) Å, c = 8.438 (2) Å, α = 71.321(6)°, β = 96.145(0)°, γ = 95.139(3)°, unit-cell volume V = 953.87 Å3, Z = 2, ρcal = 1.467 g cm−3, and space group P-1]. All measured lines were indexed and are consistent with the P-1 space group. No detectable impurities were observed.


Sign in / Sign up

Export Citation Format

Share Document