Some coplanar punch and crack problems in three-dimensional elastostatics

Certain three-dimensional punch and crack problems for an elastic half-space and an infinite elastic solid respectively reduce to Dirichlet or Neumann problems in potential theory in which the potential is to be determined at all points of an infinite three-dimensional space, given its values or the values of its normal derivative on two or more coplanar circular regions. These problems are shown to be governed by infinite sets of Fredholm integral equations of the second kind, which can be solved approximately by iteration when the spacing between the circular regions is sufficiently large compared with their radii. The stress distributions in a half-space indented by two flat-ended circular punches and in an infinite solid containing two or more coplanar penny-shaped cracks opened under pressure are thus investigated.

1980 ◽  
Vol 15 (2) ◽  
pp. 53-62 ◽  
Author(s):  
J W Ivering

The analysis of the bond stress of a thick-walled tube embedded at the surface of an elastic, isotropic, semi-infinite medium is presented. The condition of three-dimensional compatibility between the tube and the anchorage medium is taken into account. An equilibrium equation for a segment of an embedded tube is derived, from which bond stresses acting on the tube can be computed. The general solution obtained relates to the vector function for a uniform lineal load acting perpendicularly to the surface of an elastic half-space. The solution is in agreement with equations derived independently for cases of one-dimensional (lineal) compatibility. The equation of equilibrium derived for a tube segment embedded at the surface of an elastic half-space is transformed to a form suitable for solving the bond stresses of a tube anchorage embedded at some distance from the surface. A numerical solution of bond stresses obtained by elastic analysis is compared to the bond stress curve along the anchorage obtained experimentally.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


1992 ◽  
Author(s):  
Fred H. Previc ◽  
Lisa F. Weinstein ◽  
Bruno G. Breitmeyer

Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


i-com ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 67-85
Author(s):  
Matthias Weise ◽  
Raphael Zender ◽  
Ulrike Lucke

AbstractThe selection and manipulation of objects in Virtual Reality face application developers with a substantial challenge as they need to ensure a seamless interaction in three-dimensional space. Assessing the advantages and disadvantages of selection and manipulation techniques in specific scenarios and regarding usability and user experience is a mandatory task to find suitable forms of interaction. In this article, we take a look at the most common issues arising in the interaction with objects in VR. We present a taxonomy allowing the classification of techniques regarding multiple dimensions. The issues are then associated with these dimensions. Furthermore, we analyze the results of a study comparing multiple selection techniques and present a tool allowing developers of VR applications to search for appropriate selection and manipulation techniques and to get scenario dependent suggestions based on the data of the executed study.


Sign in / Sign up

Export Citation Format

Share Document