The analysis of a 2 A 1 - 2 B 1 electronic band system of the AsH 2 and AsD 2 radicals

Two new band systems have been observed in absorption following flash photolysis of AsH 3 and AsD 3 , and are assigned to 2 A 1 - 2 B 1 electronic transitions of AsH 2 and AsD 2 . The origins of both systems are at 19905 cm -1 . The bands have the complex rotational structure associated with an asymmetric rotor. Rotational analyses have been carried out for three bands of the AsH 2 spectrum, leading to the following molecular parameters: ground state, r" 0 = 1.518 Å valence angle = 90° 44'; excited state, r' 0 = 1.48 Å, valence angle = 123° 0'. The parameters associated with rotation about the a inertial axis increase rapidly with increase in v' 2 . The spectrum shows doublet splittings of up to 41 cm -1 , and the excited state furnishes the first example of a doublet state of an asymmetric top molecule which shows substantial departures from Hund’s case ( b ).

1961 ◽  
Vol 39 (12) ◽  
pp. 1738-1768 ◽  
Author(s):  
J. W. C. Johns

The boron flame bands have been observed in absorption during the flash photolysis of mixtures of boron trichloride and oxygen. Detailed analysis of the spectrum has shown that the bands arise from two electronic transitions in the linear symmetric molecule BO2, [Formula: see text] and A2Πu−X2Πg. The main molecular constants, in cm−1 except for r0, are summarized below:[Formula: see text]Both 2Π states show the Renner effect. In the ground state the Renner parameter, εω2, was found to be −92.2, whereas in the first excited state it is much smaller, −13.1 cm−1.


1972 ◽  
Vol 50 (12) ◽  
pp. 1402-1408 ◽  
Author(s):  
S. M. Japar

The 2800 Å band system of p-dibromobenzene has been photographed under high resolution and an extended vibrational analysis has been carried out. The analysis is not inconsistent with the assignment of the system to a 1B2u ← 1Ag transition, by analogy with other p-dihalogenated benzenes. The observed spectrum can be explained in terms of a number of strong type-B vibronic bands and a considerably smaller number of type-A vibronic bands. The extensive sequence structure is adequately accounted for, and can be related to observations on other halogenated benzene molecules. Thirteen ground state and nine excited state fundamental vibrational frequencies have been assigned.


A spectrum of a metastable molecule has been observed in the region 6000 to 7100 Å after flash photolysis of t -butyl nitrite. The analysis of this spectrum strongly suggests that the absorption is due to a π * — n (N) transition of nitrosomethane, and that the largest geometry change on electronic excitation is an increase by about 8° in the CNO angle. Unusual vibrational features in this spectrum are interpreted in terms of a decrease in the barrier to torsion of the CH 3 group about the CN bond from 940 ± 200 cm -1 in the ground state to 290 ± 50 cm -1 in the excited state.


1957 ◽  
Vol 35 (10) ◽  
pp. 1204-1214 ◽  
Author(s):  
R. Velasco

The absorption spectra of LiH and LiD have been observed in the near ultraviolet with high dispersion and absorbing path lengths up to 16 meters. A new band system has been found in each molecule involving the ground state and a 1Π excited state. Rotational and vibrational analyses of this system have been carried out and rotational and vibrational constants for the upper state have been determined. The observed breaking off of the rotational structure of the bands of this B1Π—X1Σ+ system has been interpreted as due to predissociation by rotation. With this assumption very accurate dissociation limits of the B1Π state have been obtained. From these dissociation limits the dissociation energies of the three known electronic states of LiH and LiD have been calculated. In particular the dissociation energies (D0) of the ground states of LiH and LiD have been found to be 2.4288 ± 0.0002 ev. and 2.4509 ± 0.0010 ev., respectively.


1998 ◽  
Vol 37 (14) ◽  
pp. 3588-3592 ◽  
Author(s):  
Greg Y. Zheng ◽  
D. Paul Rillema ◽  
Jeff DePriest ◽  
Clifton Woods

1976 ◽  
Vol 54 (2) ◽  
pp. 186-196 ◽  
Author(s):  
J. C. D. Brand ◽  
J. L. Hardwick ◽  
D. R. Humphrey ◽  
Y. Hamada ◽  
A. J. Merer

Bands of the [Formula: see text] system of sulfur dioxide appear as structured absorption superimposed on an apparent continuum. A portion of this System between 3250 and 3000 Å has been recorded in a magnetic field and is found to exhibit a strong Zeeman effect, contrary to expectation for a singlet-singlet transition between bent states of an asymmetric rotor. Line shift and broadening is observed in relatively low fields (< 3 kG), and the spectra become diffuse in fields of ~ 10 kG. The possibility is considered that the magnetic moment in the à state results from rotational coupling of singlet electronic states but it appears unlikely that the angular momentum so developed is sufficient to account for the observations. The most probable explanation of the magnetic sensitivity is that the à state couples with a background of interacting vibrational levels of the ground state and low lying states of the triplet manifold.


2011 ◽  
Vol 89 (3) ◽  
pp. 395-401 ◽  
Author(s):  
Tamara C. S. Pace ◽  
Cornelia Bohne

The complexation dynamics of the triplet excited state of xanthone with β-cyclodextrin were studied at various temperatures between 10 and 50 °C. Association and dissociation rate constants were determined using the laser flash photolysis quenching methodology with Cu2+ as a quencher. The rate constants for the association and dissociation of triplet xanthone with β-cyclodextrin increased with temperature, while the equilibrium constant for the triplet excited state remained relatively constant. Equilibrium constants for the ground-state complexation of xanthone with β-cyclodextrin were determined from fluorescence studies at various temperatures. The ground-state binding efficiency decreased with temperature and was markedly greater than that of the triplet excited state at all temperatures. The enthalpy and entropy for the β-cyclodextrin complex formation of the ground and triplet excited states fall on the enthalpy–entropy compensation relationship previously established for cyclodextrin complexes. The activation enthalpies for the association and dissociation rate constants for triplet xanthone are similar. The activation entropy is favorable for the association process, whereas a negative activation entropy was measured for the dissociation process, suggesting that solvation plays a key role in the complex formation between xanthone and β-cyclodextrin.


1995 ◽  
Vol 73 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Pierre D. Harvey ◽  
Marielle Crozet ◽  
Khin T. Aye

The photoinduced addition of O2 onto the unsaturated cluster Pd3(dppm)3CO2+ (as a CF3CO2− salt) in acetonitrile is reported. The final product Pd3(dppm)3(O2)22+(v(O2) = 838 and 866 cm−1) is formed in a multi-step fashion in which two photochemical intermediates are observed (presumably Pd3(dppm)3(O2)(CO)2+ and Pd3(dppm)3(O2)2+. No X-ray structure could be obtained, but numerous spectroscopic findings demonstrate that O2 binds the Pd3 center as a peroxo-O2, and acts as a two-electron donor that triply bridges the metal atoms (forming a 44-electron cluster). The very small excited state lifetimes (between 25 and 35 ± 10 ps) obtained by picosecond flash photolysis indicate that the primary photoreaction is unimolecular, and demonstrate that the first photochemically added O2 molecule must be preassembled in the excited state prior to any photoinduced transformation. This [Formula: see text] ground state complex is responsible for the photoinduced production of the bisdioxygen compound and can be observed by UV–visible spectroscopy. The low efficiency of the photoreaction (quantum yield (Φ) = 0.033 ± 0.004) is explained by the very short excited state lifetime at 298 K, and the competition of O2 with solvent molecules to occupy the unsaturated site of the empty cavity in Pd3(dppm)3CO2+ (i.e., ground state guest–host chemistry). The binding constant for O2 with Pd3(dppm)3CO2+ is roughly estimated to range between 1 and 730 M−1 in the ground state and is considered to be weak. Keywords: clusters, photochemistry, guest–host, oxidation, dioxygen.


1966 ◽  
Vol 44 (2) ◽  
pp. 353-372 ◽  
Author(s):  
A. J. Merer ◽  
D. N. Travis

The ultraviolet absorption spectrum of the free CNC radical has been discovered in the flash photolysis of diazoacetonitrile, HC(CN)N2. The identity of the radical has been proved from isotopic evidence, using 15N and 13C, together with rotational analysis of the bands. Rotational analyses have shown that the bands of CNC must be assigned to two electronic transitions, A2Δu–X 2Πg, and [Formula: see text]. The sequence bands in the bending vibrations, which are observed in both electronic transitions, show evidence of Renner–Teller interaction in both the degenerate electronic states: this interaction is extremely large in the X2Πg state. The principal constants (in cm−1) of the observed states of CNC are as follows:[Formula: see text]The C—N bond length in the ground state of CNC is found to be 1.245 Å.CNC is isomeric with CCN, whose spectrum has been reported previously; some interesting comparisons are made between the spectra of these two molecules.


Sign in / Sign up

Export Citation Format

Share Document