Amplitude of the de Haas—van Alphen effect in mercury

The amplitude of the de Haas-van Alphen oscillations in mercury has been studied at temperatures between 1 and 17 K and fields between 20 and 90 T. Because of the low Debye temperature of mercury, the Dingle temperature X might be expected to increase appreciably with temperature because of increased scattering of electrons by phonons. Such a temperature dependent X would also cause the appropriate logarithmic plot of amplitude against temperature to depart appreciably from linearity. Measurements of X as a function of temperature and of the temperature dependence of amplitude at a number of fields have however provided no evidence of any appreciable temperature dependence of X . This apparently paradoxical result turns out to be explicable by a recent many-body theory due to Engelsberg & Simpson of the effects of electron-phonon scattering on the de Haas-van Alphen amplitude.

1968 ◽  
Vol 111 (1) ◽  
pp. 392-416 ◽  
Author(s):  
K DIETRICH ◽  
K HARA

1970 ◽  
Vol 31 (C4) ◽  
pp. C4-99-C4-104
Author(s):  
T. P. DAS ◽  
C. M. DUTTA ◽  
N. C. DUTTA

2014 ◽  
Vol 5 (3) ◽  
pp. 982-992 ◽  
Author(s):  
M AL-Jalali

Resistivity temperature – dependence and residual resistivity concentration-dependence in pure noble metals(Cu, Ag, Au) have been studied at low temperatures. Dominations of electron – dislocation and impurity, electron-electron, and electron-phonon scattering were analyzed, contribution of these mechanisms to resistivity were discussed, taking into consideration existing theoretical models and available experimental data, where some new results and ideas were investigated.


1988 ◽  
Vol 88 (12) ◽  
pp. 7791-7798 ◽  
Author(s):  
Leslie J. Root ◽  
Frank H. Stillinger ◽  
Gary E. Washington

Sign in / Sign up

Export Citation Format

Share Document