Temperature Dependence of the Contribution to the Transport Properties from Electron-Phonon Scattering in Dilute Alloys

1971 ◽  
Vol 26 (5) ◽  
pp. 242-245 ◽  
Author(s):  
D. L. Mills
2014 ◽  
Vol 5 (3) ◽  
pp. 982-992 ◽  
Author(s):  
M AL-Jalali

Resistivity temperature – dependence and residual resistivity concentration-dependence in pure noble metals(Cu, Ag, Au) have been studied at low temperatures. Dominations of electron – dislocation and impurity, electron-electron, and electron-phonon scattering were analyzed, contribution of these mechanisms to resistivity were discussed, taking into consideration existing theoretical models and available experimental data, where some new results and ideas were investigated.


1978 ◽  
Vol 56 (1) ◽  
pp. 161-174 ◽  
Author(s):  
J. G. Cook ◽  
M. J. Laubitz

The electrical resistivity (ρ), thermoelectric power(S), and thermal conductivity (κ) of two Sr samples and two Ba samples have been determined from 30 to 300 K. Large deviations from Matthiessen's rule (DMR) were observed. The estimated transport properties for ideally pure Sr and Ba indicate that these elements, like Ca, show large deviations from the Bloch–Gruneisen form for ρ(T) at all temperatures, large and positive diffusion thermopowers with a negative phonon-drag contribution, and large deviations from the Wiedemann–Franz relationship (DWFR). In these respects, they are much more like the transition metals than the monovalent metals.In the second, analytical, portion of the paper we study the DWFR in some detail. First, the effect of lattice conduction is estimated, and found to be large. Then, a function X(E) of the electron energy, closely related to the conventional conductivity function σ(E), is estimated from the ρ and S data now available for Ca, Sr, and Ba above 300 K, and used to compute S and the Lorenz function for elastic electron–phonon scattering below 300 K. Comparison with the experimental data indicates that the energy dependence of the electron parameters is responsible for the electronic DWFR, and effects the diffusion thermoelectric power. Such 'band effects' may also be seen in the thermal resistivity due to inelastic scattering in at least Sr. Regrettably, we are not able to explain the observed DMR.


2017 ◽  
Vol 16 (04) ◽  
pp. 1750034 ◽  
Author(s):  
Ferdinand Grüneis

Inspired by the phenomenon of fluorescence intermittency in quantum dots and other materials, we introduce small off-states (intermissions) which interrupt the generation and recombination (= [Formula: see text]–[Formula: see text]) process in a semiconductor material. If the remaining on-states are power-law distributed, we find an almost pure 1/[Formula: see text] spectrum. Besides well-known [Formula: see text]–[Formula: see text] noise, we obtain two 1/[Formula: see text] noise components which can be attributed to the intermittent generation and recombination process. These components can be given the form of Hooge's relation with a Hooge coefficient [Formula: see text] describing the contribution of the generation and recombination process, respectively. Herein, the coefficients [Formula: see text] and [Formula: see text] describe impact of intermissions which in general are different for the generation and recombination process. The impact of [Formula: see text]–[Formula: see text] noise on 1/[Formula: see text] noise is comprised in the coefficient [Formula: see text] for the generation and [Formula: see text] for the recombination process. These coefficients are specified for an intrinsic and a slightly extrinsic semiconductor as well as for a semiconductor with traps; for the latter, the temperature dependence of 1/[Formula: see text] noise is also investigated. 1/[Formula: see text] noise is shown to be inversely related to the number of neutral and ionized [Formula: see text]-atoms rather than to the number of conduction electrons as defined in Hooge's relation. As a possible origin of 1/[Formula: see text] noise in semiconductors, electron–phonon scattering is suggested.


1994 ◽  
Vol 231 (3-4) ◽  
pp. 319-324 ◽  
Author(s):  
A.I. Golovashkin ◽  
A.V. Gudenko ◽  
A.M. Tskhovrebov ◽  
L.N. Zherikhina ◽  
M.L. Norton

2000 ◽  
Vol 26 (12) ◽  
pp. 890-893 ◽  
Author(s):  
V. V. Andrievskiı̆ ◽  
I. B. Berkutov ◽  
Yu. F. Komnik ◽  
O. A. Mironov ◽  
T. E. Whall

1994 ◽  
Vol 235-240 ◽  
pp. 1481-1482 ◽  
Author(s):  
A.I. Golovashkin ◽  
A.V. Gudenko ◽  
A.M. Tskhovrebov ◽  
L.N. Zherikhina ◽  
M.L. Norton

2003 ◽  
Vol 13 (03) ◽  
pp. 849-871 ◽  
Author(s):  
TSUNEYA ANDO

A brief review is given on electronic and transport properties of carbon nanotubes mainly from a theoretical point of view. The topics include a description of electronic states in a tight-binding model and in an effective-mass or k · p scheme. Transport properties are discussed including absence of backward scattering except for scatterers with a potential range smaller than the lattice constant, its extension to multi-bands cases, and long-wavelength phonons and electron-phonon scattering.


The amplitude of the de Haas-van Alphen oscillations in mercury has been studied at temperatures between 1 and 17 K and fields between 20 and 90 T. Because of the low Debye temperature of mercury, the Dingle temperature X might be expected to increase appreciably with temperature because of increased scattering of electrons by phonons. Such a temperature dependent X would also cause the appropriate logarithmic plot of amplitude against temperature to depart appreciably from linearity. Measurements of X as a function of temperature and of the temperature dependence of amplitude at a number of fields have however provided no evidence of any appreciable temperature dependence of X . This apparently paradoxical result turns out to be explicable by a recent many-body theory due to Engelsberg & Simpson of the effects of electron-phonon scattering on the de Haas-van Alphen amplitude.


Sign in / Sign up

Export Citation Format

Share Document