transmission windows
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Hai Lin ◽  
Yanjie Wu ◽  
Jie Xiong ◽  
Rui Zhou ◽  
Qiuyu Li ◽  
...  

2021 ◽  
Author(s):  
Hui Bai ◽  
Mingbao Yan ◽  
he wang ◽  
Jiafu Wang ◽  
Lin Zheng ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1803
Author(s):  
Hanna Izabela Stawska ◽  
Maciej Andrzej Popenda

Long-period optical fiber gratings (LPGs) are one of the widely used concepts for the sensing of refractive index (RI) changes. Negative curvature hollow-core fibers (NCHCFs), with their relatively large internal diameters that are easy to fill with liquids, appear as a very interesting medium to combine with the idea of LPGs and use for RI sensing. However, to date, there has been no investigation of the RI sensing capabilities of the NCHCF-based LPGs. The results presented in the paper do not only address this matter, but also compare the RI sensitivities of the NCHCFs alone and the gratings. By modeling two revolver-type fibers, with their internal diameters reflecting the results of the possible LPG-inscription process, the authors show that the fibers’ transmission windows shift in response to the RI change, resulting in changes in RI sensitivities as high as −4411 nm/RIU. On the contrary, the shift in the transmission dip of the NCHCF-based LPGs corresponds to a sensitivity of −658 nm/RIU. A general confirmation of these results was ensured by comparing the analytical formulas describing the sensitivities of the NCHCFs and the NCHCF-based LPGs.


Icarus ◽  
2021 ◽  
Vol 357 ◽  
pp. 114228
Author(s):  
Paul Corlies ◽  
George D. McDonald ◽  
Alexander G. Hayes ◽  
James J. Wray ◽  
Máté Ádámkovics ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Bilal Aghoutane ◽  
Mohammed El Ghzaoui ◽  
Hanan El Faylali

AbstractThe aim of this work consists in characterizing the Terahertz (THz) propagation channel in an indoor environment, in order to propose a channel model for THz bands. We first described a propagation loss model by taking into account the attenuation of the channel as a function of distance and frequency. The impulse response of the channel is then described by a set of rays, characterized by their amplitude, their delay and their phase. Apart from the frequency selective nature, path loss in THz band is also an others issue associated with THz communication systems. This work based on the conventional Saleh-Valenzuela (SV) model which is intended for indoor scenarios. In this paper, we have introduced random variables as Line of sight (LOS) component, and then merging it with the SV channel model to adopt it to the THz context. From simulation, we noted an important effect when the distance between the transmitter and the receiver change. This effect produces variations in frequency loss. The simulations carried out from this model show that to enhance the performance of THz system it is recommended to transmit information over transmission windows instead over the whole band.


2021 ◽  
Vol 8 ◽  
pp. 10
Author(s):  
Azim Uddin ◽  
Faxiang Qin ◽  
Diana Estevez ◽  
Hua-Xin Peng

Previously, we have demonstrated a viable approach based on microstructural and topological modulation of periodically arranged elements to program wave scattering in ferromagnetic glass-coated microwire metacomposites. In order to fully exploit the intrinsic structure of the composite, here, we implement the concept of composites plainification by an in-built vertical interface on randomly dispersed short-cut microwires allowing the adjustment of electromagnetic properties to a larger extent. Such interface was modified through arranging wires with different internal structures in two separated regions and by alternating these regions through wire concentration variations associated with polarization differences across the interface. When the wire concentration was equal in both regions, two well-defined transmission windows with varied amplitude and bandwidth were generated. Wire concentration fluctuations resulted in strong scattering changes ranging from broad passbands to pronounced stopbands, demonstrating the intimate relationship between wire content and space charge variations at the interface. This provides a new method to rationally exploit interfacial effects and microstructural features of microwire metacomposites. Moreover, the advantages of enabling tunable scattering spectra by merely 0.053 vol.% of fillers and simple structure make the proposed plainification strategy instrumental to designing filters with broadband frequency selectivity.


Author(s):  
Luqi Yin ◽  
Yao Zhou ◽  
Tong Jiang ◽  
Yunxiang Xu ◽  
Tong Liu ◽  
...  

Floating photovoltaic (FPV) systems are gaining attention across the world, which make an important contribution to the green energy revolution and diffuse the heated debate on the use of land...


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1728
Author(s):  
Odilbek Urmonov ◽  
HyungWon Kim

To ensure the driving safety in vehicular network, it is necessary to construct a local dynamic map (LDM) for an extended range. Using the standard vehicular communication protocols, however, vehicles can construct the LDM for only one-hop range. Constructing large-scale LDM is highly challenging because vehicles randomly change their position. This paper proposes a dynamic map propagation (DMP) method, which builds a large aggregated LDM data using a multi-hop communication. To reduce the data overhead, we introduce an efficient clustering method based on a half-circle of the forwarder’s wireless range. The DMP elects one forwarder per cluster, which constructs LDM and forwards it to a neighbor cluster. The inter-cluster interference is minimized by allocating a different transmit window to each cluster. DMP copes with a dynamic environment by frequently re-electing the forwarders and their associated transmission windows. Simulation results reveal that DMP enhances the forwarders’ reception ratio by 20%, while extending LDM dissemination range by 29% over a previous work.


Sign in / Sign up

Export Citation Format

Share Document