The absorption and emission spectra of HD in the vacuum ultraviolet

1976 ◽  
Vol 54 (5) ◽  
pp. 525-567 ◽  
Author(s):  
I. Dabrowski ◽  
G. Herzberg

The absorption spectrum of HD has been studied under high resolution in the vacuum ultraviolet to 840 Å, the emission spectrum to 1000 Å. The analysis of the latter gives accurate rotational constants and vibrational intervals of the ground state right up to the dissociation limit. Comparing these experimental data with calculations from ab initio theory, agreement to the same extent as was previously found for H2 and D2 is obtained. Extrapolation of the obs. – calc. values from H2 and D2 to infinite mass yields agreement with the recently revised theoretical values to within less than 0.1 for v < 7 and less than 0.5 cm−1 for the whole range of observed v values. The deviations for finite mass (H2 and D2) are clearly due to the non-adiabatic corrections neglected in the ab initio calculations. The results for HD are not halfway between H2 and D2 but are closer to H2. This apparent anomaly can be quantitatively accounted for, on the basis of recent calculations of Wolniewicz, by the effect of additional nonadiabatic corrections caused by the excited Σu states which in HD, unlike H2 and D2, can interact with the ground state.The rotational and vibrational constants of the excited states B1Σu+, C1Πu, and B′1Σu+ show somewhat larger deviations from ab initio values ranging for v0v from 5 to 120 cm−1, just as for H2 and D2. The electronic isotope shift of HD lies approximately half-way between the values of H2 and D2 as expected. In addition to the B–X, C–X, and B′–X systems the absorption spectrum of HD, unlike that of H2 and D2, shows an extensive progression of weak transitions to the double minimum state EF1Σg+ and a few very weak transitions to the G1Σg+ and I1Πg states. For the EF state both levels in the outer minimum (F) and levels above the maximum are observed. The correlation of the six excited states B, C, B′, EF, G, and I to the two close-lying dissociation limits corresponding to H + D* and H* + D is briefly discussed.

1966 ◽  
Vol 44 (7) ◽  
pp. 1583-1592 ◽  
Author(s):  
F. Creutzberg

The absorption spectrum of P2 has been photographed at high resolution down to 1 220 Å. Eight band systems have been analyzed, including two that were first observed by Dressier. Four of the excited states are identified as [Formula: see text] states and four as 1Πu states. Rotational and vibrational constants are given for the excited states, including improved constants for the previously known lowest excited [Formula: see text] state.


1974 ◽  
Vol 52 (12) ◽  
pp. 1110-1136 ◽  
Author(s):  
I. Dabrowski ◽  
G. Herzberg

The absorption spectrum of D2 has been studied in absorption at high resolution (0.254 Å/mm) in the region 1100 to 840 Å. The three band systems B1Σu+ ← X1Σg+ (Lyman bands), B′ 1Σu+ ← X1Σg+ and C1Πu ← X1Σg (Werner bands) have been measured right up to the dissociation limit. New improved values of the rotational and vibrational constants in the three upper states have been derived. By comparing the electronic energy differences Tc thus obtained with the corresponding values for H2 fairly precise values for the electronic isotope shifts for the B–X and C–X systems have been determined (+ 2.8 and −7.4 cm−1 respectively). In this connection two gaps in the knowledge of the absorption spectrum of H2 have been filled: the Lyman bands with ν′ = 5–16 and the Werner bands with ν′ = 0–4 (see Appendix). A detailed comparison is made of the observed vibrational levels and the observed Bν values of D2 with those derived from ab initio calculations based on the Kotos and Wolniewicz' potential functions. From the observed electronic isotope shift the adiabatic corrections can be estimated near the minimum. For the B state these estimates agree very well with the ab initio calculations. The remaining differences between observation and theory are partly due to lack of convergence of the Born–Oppenheimer calculation, partly to the neglect of nonadiabatic corrections. The convergence error near minimum is estimated to be 5.1 cm−1 for the B state and 1.2 cm−1 for the C state.


1984 ◽  
Vol 62 (12) ◽  
pp. 1639-1664 ◽  
Author(s):  
I. Dabrowski

The Lyman and Werner bands of H2 have been measured under high resolution in the vacuum ultraviolet from 1000 to 1650 Å. Flash discharge spectra, both in absorption and in emission, have allowed an extension of the analysis to include most of the rotation–vibration levels of the ground state ([Formula: see text], ν = 0 to 14, J = 0 to 29). The C1Πu state has been observed from ν = 0–13, and the [Formula: see text] state from ν = 0–17, including highly rotationally excited levels for ν = 0–6. The resulting rotation–vibration energy levels are accurate to 0.1 cm−1.The agreement between observation and ab initio theory is now very good. The deviations of the vibrational levels are very close to zero for low ν, but increase to 0.3 cm−1 for high ν. The ab initio calculations are somewhat less accurate for the rotational levels. The deviations are close to zero for low J, but increase to 4 cm−1 for high J, that is, for energy levels close to the dissociation limit. It can also be seen that the convergence error in the Born–Oppenheimer calculation is small (~0.1 cm−1) at low energies, but approaches 1 cm−1 near the dissociation limit.


1966 ◽  
Vol 44 (10) ◽  
pp. 2447-2459 ◽  
Author(s):  
B. A. Morrow

The absorption spectrum of SH in the vacuum ultraviolet has been obtained by the flash photolysis of hydrogen sulfide. Transitions from the 2Π ground state to seven excited states have been observed and four of these fit reasonably well into a Rydberg series. From an extrapolation to the convergence limit of this series, a value of 10.40 ± 0.03 eV for the ionization potential of SH has been derived. Values for the rotational constants of these new electronic states have been determined; corresponding data for SD have also been obtained. The (1–0) transition of the system near 1 670 Å (B2Σ–X2Π) was observed, and, with the aid of isotope relations, vibrational constants of the B state have been derived. An estimate of the dissociation energy of SH in this excited state is D0′ = 24 190 ± 1 000 cm−1.


The absorption spectrum of Mg I vapour between 2000 and 700 ņ has been reinvestigated, using the continuum emitted by the Bonn 500 MeV electron synchrotron as the source of background radiation. Extensions to the double excitation spectrum of the valence shell have resulted and are compared with recent data obtained by electron impact spectroscopy. Ab initio calculations of the doubly excited configurations have been extended to high series members, and the transition from LS to jj coupling is shown to be responsible for the appearance of a 1 S 0 - 3 P 1 series not previously detected by photoabsorption.


2020 ◽  
Vol 153 (5) ◽  
pp. 054301
Author(s):  
Michael H. Palmer ◽  
Søren Vrønning Hoffmann ◽  
Nykola C. Jones ◽  
Marcello Coreno ◽  
Monica de Simone ◽  
...  

1968 ◽  
Vol 46 (8) ◽  
pp. 987-1003 ◽  
Author(s):  
Ch. Jungen ◽  
E. Miescher

Heterogeneous perturbations 2E+ ~ 2Π of largely different magnitudes are observed with high resolution in the vacuum-ultraviolet absorption and in the infrared emission spectrum of the NO molecule. The rotational interactions between 2Σ+ Rydberg states and levels of the B2Π non-Rydberg state are shown to be "configurationally forbidden", but produced by the configuration interaction between the non-Rydberg levels and 2Π Rydberg states. The latter together with the 2Σ+ Rydberg states form p complexes. In this way the interactions display the l uncoupling in the complexes; they can be evaluated theoretically and can be analyzed fully. The cases of the strong interactions D2Σ+(v = 3) ~ B2Π(v = 16)and D2Σ+(v = 5) ~ B2Π(v = 21) and of the weaker D2Σ+(v = 1) ~ B2Π(v = 11), all three observed as perturbations in ε bands crossing 3 bands, are discussed in detail. It is further shown that perturbations between γ bands and β bands as well as perturbations between analogous bands of higher principal quantum number are absent, and thus the assignment of the A2Σ+ and E2Σ+ states to the s Rydberg series is confirmed.


1981 ◽  
Vol 59 (6) ◽  
pp. 835-840 ◽  
Author(s):  
A. E. Douglas

The absorption spectrum of Cl2 in the vacuum ultraviolet region has been photographed with sufficient resolution to allow rotational analyses of many bands. The separated isotopic molecule 35Cl2 and cooled absorption cells were used to simplify the spectrum. A band system associated with an ionic state has been observed in the 1330–1450 Å range. Many large perturbations in the system prevent the determination of the usual rotational and vibrational constants. Some progress has been made in the analyses of a few bands associated with Rydberg states.


The absorption spectrum of Ag I between 550 Å and 1590 Å has been investigated by using synchrotron radiation as the source of continuum. Over 50 new transitions are reported, nearly all of which can be classified into Rydberg series due to excitation of one electron from the 4d subshell. Identifications are made by comparison with previous studies of the arc spectrum as well as with absorption spectra of related elements. Ab initio Hartree-Fock calculations have revealed the importance of treating 5s 5p 1 P based levels by a separate variational method. Doubly excited configurations are also found, but, in contrast to a previous theoretical prediction, double vacancy production within the 4d subshell is not found to be significant for Ag I.


Sign in / Sign up

Export Citation Format

Share Document