Inverse scattering for geophysical problems. III. On the velocity-in version problems of acoustics

A bounded inhomogeneity D is immersed in an acoustic medium; the speed of sound is a function of position in D , and is constant outside. A time-harmonic source is placed at a point y and the pressure at a point x is measured. Given such measurements at all for all x ∈ P , for all y ∈ P where P is a plane that does not intersect D , can the speed of sound (in the unknown region D ) be recovered? This is a velocity-inversion problem. The three-dimensional problem has been solved analytically by Ramm ( Phys. Lett . 99A, 258-260 (1983)). In the present paper, analogous one-dimensional and two-dimensional problems are solved, as well as the problem where the plane P is the interface between two different acoustic media.

1975 ◽  
Vol 53 (2) ◽  
pp. 157-164 ◽  
Author(s):  
F. Ehlotzky

The one-dimensional problem of electron scattering by a standing light wave, known as the Kapitza–Dirac effect, is shown to be easily extendable to two and three dimensions, thus showing all characteristics of diffraction of electrons by simple two- and three-dimensional rectangular lattices.


Author(s):  
A. Qian ◽  
R. S. Ballinger

Abstract This research presents the finite element formulation of a bulk-reacting sound absorbing material for use in interior cavity solutions. The bulk properties of the absorbing material are represented by complex density and complex propagation speed. Coupling between the vibrating cavity structure and the acoustic medium is considered. The continuity of sound pressure and the particle velocity at the interface between the acoustic domains having different properties is satisfied. Two case studies, a one-dimensional duct and a three-dimensional cavity, are considered. Analytical solutions and experimental results are compared to the finite element results. Excellent agreement has been achieved.


Author(s):  
Arthur W. Warrick

Chapters 4 and 5 dealt with one-dimensional rectilinear flow, with and without the effect of gravity. Now the focus is on multidimensional flow. We will refer to two- and three-dimensional flow based on the number of Cartesian coordinates necessary to describe the problem. For this convention, a point source emitting a volume of water per unit time results in a three-dimensional problem even if it can be described with a single spherical coordinate. Similarly, a line source would be two-dimensional even if it could be described with a single radial coordinate. A problem with axial symmetry will be termed a three-dimensional problem even when only a depth and radius are needed to describe the geometry. The pressure at a point source is undefined. But more generally, three-dimensional point sources refer to flow from finite-sized sources into a larger soil domain, such as infiltration from a small surface pond into the soil. Often, the soil domain can be taken as infinite in one or more directions. Also, a point sink can occur with flow to a sump or to a suction sampler. In two dimensions, the same types of example can be given, but we will refer to them as line sources or sinks. Practical interest in point sources includes analyses of surface or subsurface leaks and of trickle (drip) irrigation. The desirability of determining soil properties in situ has provided the impetus for a rigorous analysis of disctension and borehole infiltrometers. Also, environmental monitoring with suction cups or candles, pan lysimeters, and wicking devices all include convergent or divergent flow in multidimensions. There are some conceptual differences between line and point sources and one-dimensional sources. For discussion, consider water supplied at a constant matric potential into drier surroundings. For a one-dimensional source, the corresponding physical problem includes a planar source over an area large enough for “edge” effects to be negligible. For two dimensions, the source might be a long horizontal cylinder or a furrow of finite depth from which water flows. For three dimensions, the source could be a small orifice providing water at a finite rate or a small, shallow pond on the soil surface.


2019 ◽  
Vol 23 (4) ◽  
pp. 2131-2133 ◽  
Author(s):  
Ji-Huan He ◽  
Fei-Yu Ji

A three dimensional problem can be approximated by either a two-dimensional or one-dimensional case, but some information will be lost. To reveal the lost information due to the lower dimensional approach, two-scale mathematics is needed. Generally one scale is established by usage where traditional calculus works, and the other scale is for revealing the lost information where the continuum assumption might be forbidden, and fractional calculus or fractal calculus has to be used. The two-scale transform can approximately convert the fractional calculus into its traditional partner, making the two-scale thermodynamics much promising.


2019 ◽  
Vol 20 (9) ◽  
pp. 550-559
Author(s):  
A. A. Ilyukhin ◽  
D. V. Timoshenko

A conceptual approach to the problem of managing spatial configurations of DNA molecules is considered. The work is problematic in nature and is a synthesis of the authors’ research in the field of modeling the behavior and structure of DNA by the methods of the mechanics of a deformable solid. The subject of research in this paper is the question of the applicability of methods of control theory to a living object by the example of a DNA molecule. The paper considers both issues of controllability on examples of the influence of the parameters of a molecule on its configuration, and questions of observability and identification of parameters of a molecule, based on the visible configuration in the natural environment. A brief review of the authors’ results in terms of adaptation to the objects of research of existing and development of new mathematical models of deformable elastic objects with regard to their internal structure is given. The proposed approach is based on the concept of transition using known methods of molecular dynamics from a multi-element discrete medium to a continuum containing momentary stresses. To this end, in previous works, the authors obtained the dependence of the components of the strain tensors, force and moment stresses on various types of interatomic interaction potentials (LennardJones potential, Born-Meyer potential, etc.). The need to choose as the base model of a continuum containing momentary stresses is dictated by the peculiarities of the main object of study - nucleic acid molecules and biopolymers - which have several degrees of freedom of rotational motions. Also, as an example, we consider the case for which the reduction from the three-dimensional problem of the asymmetric theory of elasticity to a one-dimensional one was carried out by splitting the three-dimensional problem into a set of two-dimensional and one-dimensional problems. The kinematic parameters that are necessary to attract in order to obtain a closed system of equations of the one-dimensional moment theory of rods with the system of Kirchhoff’s differential equations are indicated. The remaining geometrical values are found from the relations defining them. The proposed approach is consistent with current trends in the field of molecular modeling in biophysics and physico-chemical biology, and it seems promising in solving the problems of controlling genetic and biochemical processes involving DNA.


1978 ◽  
Vol 100 (2) ◽  
pp. 294-299 ◽  
Author(s):  
T. Saitoh

This paper presents a simple numerical method for solving two and three-dimensional freezing problems with arbitrary geometries. The change of variable method introduced by Landau for the one-dimensional problem is extended to the multi-dimensional using an independent variable which takes constant values at the boundary and the freezing front. Example calculations were performed for the Stefan type freezing problem in regular squares, triangles, and ellipses. Then some of the results were compared with the experimental ones that were obtained for the constant cooling rate.


2005 ◽  
Vol 83 (7) ◽  
pp. 761-766
Author(s):  
Alexei M Frolov

The variational optimal shape of slowly rising gas bubbles in an ideal incompressible fluid is determined. It is shown that the original three-dimensional problem can be reduced to a relatively simple one-dimensional (i.e., ordinary) differential equation. The solution of this equation allows one to obtain the variational optimal form of slowly rising gas bubbles. PACS No.: 47.55.Dz


Sign in / Sign up

Export Citation Format

Share Document