On Shinbrot’s conjecture for the Navier-Stokes equations

Marvin Shinbrot conjectured that the weak solution of the Navier-Stokes equations possess fractional derivatives in time of any order less than 1/2. In this paper, using the Hardy-Littlewood maximal theorem we prove that the conjecture is true in the two-dimensional case and it is true conditionally in the three-dimensional case.

2006 ◽  
Vol 128 (6) ◽  
pp. 1394-1399 ◽  
Author(s):  
Donghyun You ◽  
Meng Wang ◽  
Rajat Mittal ◽  
Parviz Moin

A novel structured grid approach which provides an efficient way of treating a class of complex geometries is proposed. The incompressible Navier-Stokes equations are formulated in a two-dimensional, generalized curvilinear coordinate system complemented by a third quasi-curvilinear coordinate. By keeping all two-dimensional planes defined by constant third coordinate values parallel to one another, the proposed approach significantly reduces the memory requirement in fully three-dimensional geometries, and makes the computation more cost effective. The formulation can be easily adapted to an existing flow solver based on a two-dimensional generalized coordinate system coupled with a Cartesian third direction, with only a small increase in computational cost. The feasibility and efficiency of the present method have been assessed in a simulation of flow over a tapered cylinder.


2011 ◽  
Vol 666 ◽  
pp. 506-520 ◽  
Author(s):  
F. DOMENICHINI

The vortex formation behind an orifice is a widely investigated phenomenon, which has been recently studied in several problems of biological relevance. In the case of a circular opening, several works in the literature have shown the existence of a limiting process for vortex ring formation that leads to the concept of critical formation time. In the different geometric arrangement of a planar flow, which corresponds to an opening with straight edges, it has been recently outlined that such a concept does not apply. This discrepancy opens the question about the presence of limiting conditions when apertures with irregular shape are considered. In this paper, the three-dimensional vortex formation due to the impulsively started flow through slender openings is studied with the numerical solution of the Navier–Stokes equations, at values of the Reynolds number that allow the comparison with previous two-dimensional findings. The analysis of the three-dimensional results reveals the two-dimensional nature of the early vortex formation phase. During an intermediate phase, the flow evolution appears to be driven by the local curvature of the orifice edge, and the time scale of the phenomena exhibits a surprisingly good agreement with those found in axisymmetric problems with the same curvature. The long-time evolution shows the complete development of the three-dimensional vorticity dynamics, which does not allow the definition of further unifying concepts.


1977 ◽  
Vol 82 (2) ◽  
pp. 309-319 ◽  
Author(s):  
S. M. Richardson ◽  
A. R. H. Cornish

A method for solving quite general three-dimensional incompressible flow problems, in particular those described by the Navier–Stokes equations, is presented. The essence of the method is the expression of the velocity in terms of scalar and vector potentials, which are the three-dimensional generalizations of the two-dimensional stream function, and which ensure that the equation of continuity is satisfied automatically. Although the method is not new, a correct but simple and unambiguous procedure for using it has not been presented before.


2016 ◽  
Vol 799 ◽  
pp. 246-264 ◽  
Author(s):  
K. Seshasayanan ◽  
A. Alexakis

We study the linear stage of the dynamo instability of a turbulent two-dimensional flow with three components $(u(x,y,t),v(x,y,t),w(x,y,t))$ that is sometimes referred to as a 2.5-dimensional (2.5-D) flow. The flow evolves based on the two-dimensional Navier–Stokes equations in the presence of a large-scale drag force that leads to the steady state of a turbulent inverse cascade. These flows provide an approximation to very fast rotating flows often observed in nature. The low dimensionality of the system allows for the realization of a large number of numerical simulations and thus the investigation of a wide range of fluid Reynolds numbers $Re$, magnetic Reynolds numbers $Rm$ and forcing length scales. This allows for the examination of dynamo properties at different limits that cannot be achieved with three-dimensional simulations. We examine dynamos for both large and small magnetic Prandtl-number turbulent flows $Pm=Rm/Re$, close to and away from the dynamo onset, as well as dynamos in the presence of scale separation. In particular, we determine the properties of the dynamo onset as a function of $Re$ and the asymptotic behaviour in the large $Rm$ limit. We are thus able to give a complete description of the dynamo properties of these turbulent 2.5-D flows.


Author(s):  
Semiu A. Gbadebo ◽  
Nicholas A. Cumpsty ◽  
Tom P. Hynes

Flow separations in the corner regions of blade passages are common. The separations are three dimensional and have quite different properties from the two-dimensional separations that are considered in elementary courses of fluid mechanics. In particular the consequences for the flow may be less severe than the two-dimensional separation. This paper describes the nature of three-dimensional separation and addresses the way in which topological rules, based on a linear treatment of the Navier-Stokes equations, can predict properties of the limiting streamlines, including the singularities which form. The paper shows measurements of the flow field in a linear cascade of compressor blades and compares these with the results of 3D CFD. For corners without tip clearance, the presence of three-dimensional separation appears to be universal and the challenge for the designer is to limit the loss and blockage produced. The CFD appears capable of predicting this.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Weihua Wang ◽  
Guopeng Zhou

This paper is concerned with the regularity criterion of weak solutions to the three-dimensional Navier-Stokes equations with nonlinear damping in critical weakLqspaces. It is proved that if the weak solution satisfies∫0T∇u1Lq,∞2q/2q-3+∇u2Lq,∞2q/2q-3/1+ln⁡e+∇uL22ds<∞,  q>3/2, then the weak solution of Navier-Stokes equations with nonlinear damping is regular on(0,T].


2005 ◽  
Vol 127 (2) ◽  
pp. 331-339 ◽  
Author(s):  
Semiu A. Gbadebo ◽  
Nicholas A. Cumpsty ◽  
Tom P. Hynes

Flow separations in the corner regions of blade passages are common. The separations are three dimensional and have quite different properties from the two-dimensional separations that are considered in elementary courses of fluid mechanics. In particular, the consequences for the flow may be less severe than the two-dimensional separation. This paper describes the nature of three-dimensional (3D) separation and addresses the way in which topological rules, based on a linear treatment of the Navier-Stokes equations, can predict properties of the limiting streamlines, including the singularities which form. The paper shows measurements of the flow field in a linear cascade of compressor blades and compares these to the results of 3D computational fluid dynamics (CFD). For corners without tip clearance, the presence of three-dimensional separation appears to be universal, and the challenge for the designer is to limit the loss and blockage produced. The CFD appears capable of predicting this.


Sign in / Sign up

Export Citation Format

Share Document