Stability of reaction-diffusion fronts

Horvath, Petrov, Scott and Showalter (1993) have shown that isothermal reaction-diffusion fronts with cubic autocalysis are linearly unstable to two-dimensional disturbances if the ratio, δ , of the diffusion coefficient of the reactant to that of the autocatalyst, is sufficiently large. However, they were only able to obtain an analytic expression for the growth rate by assuming an infinitely thin reaction zone, which is a poor approximation for cubic autocatalysis. We have carried out a linear stability analysis of such fronts with a finite reaction rate, and find that the critical δ for instability is unchanged, but the range of unstable wavenumbers is larger and increases rather than decreases with δ .

2014 ◽  
Vol 54 (2) ◽  
pp. 79-84 ◽  
Author(s):  
Bijan Bagchi ◽  
Subhrajit Modak ◽  
Prasanta K. Panigrahi

The relevance of parity and time reversal (PT)-symmetric structures in optical systems has been known for some time with the correspondence existing between the Schrödinger equation and the paraxial equation of diffraction, where the time parameter represents the propagating distance and the refractive index acts as the complex potential. In this paper, we systematically analyze a normalized form of the nonlinear Schrödinger system with two new families of PT-symmetric potentials in the presence of competing nonlinearities. We generate a class of localized eigenmodes and carry out a linear stability analysis on the solutions. In particular, we find an interesting feature of bifurcation characterized by the parameter of perturbative growth rate passing through zero, where a transition to imaginary eigenvalues occurs.


2013 ◽  
Vol 721 ◽  
pp. 268-294 ◽  
Author(s):  
L. Talon ◽  
N. Goyal ◽  
E. Meiburg

AbstractA computational investigation of variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells is presented. As a first step, two-dimensional base states are obtained by means of simulations of the Stokes equations, which are nonlinear due to the dependence of the viscosity on the local concentration. Here, the vertical position of the displacement front is seen to reach a quasisteady equilibrium value, reflecting a balance between viscous and gravitational forces. These base states allow for two instability modes: first, there is the familiar tip instability driven by the unfavourable viscosity contrast of the displacement, which is modulated by the presence of density variations in the gravitational field; second, a gravitational instability occurs at the unstably stratified horizontal interface along the side of the finger. Both of these instability modes are investigated by means of a linear stability analysis. The gravitational mode along the side of the finger is characterized by a wavelength of about one half to one full gap width. It becomes more unstable as the gravity parameter increases, even though the interface is shifted closer to the wall. The growth rate is largest far behind the finger tip, where the interface is both thicker, and located closer to the wall, than near the finger tip. The competing influences of interface thickness and wall proximity are clarified by means of a parametric stability analysis. The tip instability mode represents a gravity-modulated version of the neutrally buoyant mode. The analysis shows that in the presence of density stratification its growth rate increases, while the dominant wavelength decreases. This overall destabilizing effect of gravity is due to the additional terms appearing in the stability equations, which outweigh the stabilizing effects of gravity onto the base state.


2019 ◽  
Vol 9 (22) ◽  
pp. 4840
Author(s):  
Yue Chen

This paper starts with a generalized Burton, Cabrera and Frank (BCF) model by considering the energetic contribution of the adjacent terraces to the step chemical potential. We use the linear stability analysis of the quasistatic free-boundary problem for a two-dimensional step separated by broad terraces to study the step-meandering instabilities. The results show that the equilibrium adatom coverage has influence on the morphological instabilities.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


2005 ◽  
Vol 74 (1) ◽  
pp. 8-12 ◽  
Author(s):  
Jérôme Colin

The linear stability analysis of the shape of a spherical cavity embedded in an infinite-size matrix under stress has been performed when infinitesimal perturbation from sphericity of the rod is assumed to appear by surface diffusion. Developing the perturbation on a basis of complete spherical harmonics, the growth rate of each harmonic Ylm(θ,φ) has been determined and the conditions for the development of the different fluctuations have been discussed as a function of the applied stress and the order l of the perturbation.


2017 ◽  
Vol 95 (3) ◽  
pp. 291-296 ◽  
Author(s):  
Pouriya Amini ◽  
Ehsan Khavasi ◽  
Navid Asadizanjani

Stability of two-way coupled particle-laden density current is studied with the aim of linear stability analysis. Interfacial instability can be found in density currents, which effects entrainment and the rate of effective mixing. In this paper, we investigate the density current interfacial instability using linear stability theory, considering the particles attendance. The ultimate goal is to extract the governing equation for current with particles and study the effect of different parameters on stability of such currents. Base flow has velocity and density profiles of tangent hyperbolic type. Main current and particles are studied in two separate phases. It is found that current will be more stable as M0 (M0 = S∗N∗/ρ∗ where ρ∗ is the non-dimensional flow density, S∗ is the Stokes’ drag coefficient, and N∗ is the particles’ number density) grows, this is a result of number of particles and their radius, and also viscosity effects. The current is more stable as the growth rate increases. As the Richardson number in M0 rises, the growth rate value decreases. As the slope of the river bed increases, the current is less stable.


1979 ◽  
Vol 30 (4) ◽  
pp. 544-558 ◽  
Author(s):  
Y Tsuji ◽  
Y Morikawa

SummaryA linear stability analysis was made for a radial wall jet. A perturbation method against the two-dimensional wall jet was used for the formulation, from which a non-homogeneous Orr-Sommerfeld equation was derived. The computation showed that disturbances are more unstable in the radial wall jet than in the two-dimensional case, which agrees qualitatively with an experimental evidence.


Sign in / Sign up

Export Citation Format

Share Document