scholarly journals Reynolds averaged Navier–Stokes modelling of long waves induced by a transient wave group on a beach

Author(s):  
Javier L. Lara ◽  
Andrea Ruju ◽  
Inigo J. Losada

This paper presents the numerical modelling of the cross shore propagation of infragravity waves induced by a transient focused short wave group over a sloping bottom. A dataset obtained through new laboratory experiments in the wave flume of the University of Cantabria is used to validate the Reynolds averaged Navier–Stokes type model IH-2VOF. A new boundary condition based on the wave maker movement used in the experiments is implemented in the model. Shoaling and breaking of short waves as well as the enhancement of long waves and the energy transfer to low-frequency motion are well addressed by the model, proving the high accuracy in the reproduction of surf zone hydrodynamics. Under the steep slope regime, a long wave trough is radiated offshore from the breakpoint. Numerical simulations conducted for different bottom slopes and short wave steepness suggest that this low-frequency breakpoint generated wave is controlled by both the bed slope parameter and the Iribarren number. Moreover, the numerical model is used to investigate the influence that a large flat bottom induces on the propagation pattern of long waves.

Author(s):  
T.E Baldock

This paper presents new laboratory data on the generation of long waves by the shoaling and breaking of transient-focused short-wave groups. Direct offshore radiation of long waves from the breakpoint is shown experimentally for the first time. High spatial resolution enables identification of the relationship between the spatial gradients of the short-wave envelope and the long-wave surface. This relationship is consistent with radiation stress theory even well inside the surf zone and appears as a result of the strong nonlinear forcing associated with the transient group. In shallow water, the change in depth across the group leads to asymmetry in the forcing which generates significant dynamic setup in front of the group during shoaling. Strong amplification of the incident dynamic setup occurs after short-wave breaking. The data show the radiation of a transient long wave dominated by a pulse of positive elevation, preceded and followed by weaker trailing waves with negative elevation. The instantaneous cross-shore structure of the long wave shows the mechanics of the reflection process and the formation of a transient node in the inner surf zone. The wave run-up and relative amplitude of the radiated and incident long waves suggests significant modification of the incident bound wave in the inner surf zone and the dominance of long waves generated by the breaking process. It is proposed that these conditions occur when the primary short waves and bound wave are not shallow water waves at the breakpoint. A simple criterion is given to determine these conditions, which generally occur for the important case of storm waves.


1986 ◽  
Vol 1 (20) ◽  
pp. 38 ◽  
Author(s):  
Jeffrey H. List

Data from a low energy swell-dominated surf zone are examined for indications that observed low frequency motions are simply group-forced bounded long waves. Time series of wave amplitude are compared to filtered long wave records through cross-spectral and cross-correlation analysis. These methods are found to have limited usefulness until long waves are separated into seaward and shoreward components. Then a clear picture of a rapidly shoaling bounded long wave emerges, with a minimum of nearly one fourth of the long wave amplitude being explainable by this type of motion close to shore. Through the zone in which waves were breaking, and incident wave amplitude variability decreased by 50%, the contribution from the bounded long wave continued to increase at a rate much greater than a simple shoaling effect. Also present are clear signs that this amplified bounded long wave is reflected from a position close to the shoreline, and is thus released from wave groups as a free, offshore-progressive wave.


2019 ◽  
Vol 7 (11) ◽  
pp. 383
Author(s):  
Stephanie Contardo ◽  
Graham Symonds ◽  
Laura Segura ◽  
Ryan Lowe ◽  
Jeff Hansen

An alongshore array of pressure sensors and a cross-shore array of current velocity and pressure sensors were deployed on a barred beach in southwestern Australia to estimate the relative response of edge waves and leaky waves to variable incident wind wave conditions. The strong sea breeze cycle at the study site (wind speeds frequently > 10 m s−1) produced diurnal variations in the peak frequency of the incident waves, with wind sea conditions (periods 2 to 8 s) dominating during the peak of the sea breeze and swell (periods 8 to 20 s) dominating during times of low wind. We observed that edge wave modes and their frequency distribution varied with the frequency of the short-wave forcing (swell or wind-sea) and edge waves were more energetic than leaky waves for the duration of the 10-day experiment. While the total infragravity energy in the surf zone was higher during swell forcing, edge waves were more energetic during wind-sea periods. However, low-frequency (0.005–0.023 Hz) edge waves were found to be dominant in absence of wind-sea conditions, while higher-frequency (0.023–0.050 Hz) edge waves dominated when wind-sea conditions were present.


2011 ◽  
Vol 41 (10) ◽  
pp. 1842-1859 ◽  
Author(s):  
Qingping Zou

Abstract Second-order analytical solutions are constructed for various long waves generated by a gravity wave train propagating over finite variable depth h(x) using a multiphase Wentzel–Kramers–Brillouin (WKB) method. It is found that, along with the well-known long wave, locked to the envelope of the wave train and traveling at the group velocity Cg, a forced long wave and free long waves are induced by the depth variation in this region. The forced long wave depends on the depth derivatives hx and hxx and travels at Cg, whereas the free long waves depend on h, hx, and hxx and travel in the opposite directions at . They interfere with each other and generate free long waves radiating away from this region. The author found that this topography-induced forced long wave is in quadrature with the short-wave group and that a secondary long-wave orbital velocity is generated by variable water depth, which is in quadrature with its horizontal bottom counterpart. Both these processes play an important role in the energy transfer between the short-wave groups and long waves. These behaviors were not revealed by previous studies on long waves induced by a wave group over finite topography, which calculated the total amplitude of long-wave components numerically without consideration of the phase of the long waves. The analytical solutions here also indicate that the discontinuity of hx and hxx at the topography junctions has a significant effect on the scattered long waves. The controlling factors for the amplitudes of these long waves are identified and the underlying physical processes systematically investigated in this presentation.


2019 ◽  
Vol 7 (9) ◽  
pp. 305 ◽  
Author(s):  
Theo Moura ◽  
Tom E. Baldock

Different conceptual models for forced infragravity (long) waves exist in the literature, which suggest different models for the behavior of shoaling forced waves and the possible radiation of free long waves in that process. These are discussed in terms of existing literature. A simple numerical model is built to evaluate the wave shape in space and time during shoaling of forced waves with concurrent radiation of free long waves to ensure mass continuity. The same qualitative results were found when performing simulations with the COULWAVE model using the radiation stress term in the momentum equation to force the generation and propagation of bound waves. Both model results indicate a strong frequency dependence in the shoaling rate and on the lag of the total long wave with respect to the forcing, consistent with observations in the literature and more complex evolution models. In this approach, a lag of the long wave is only observed in the time domain, not in the space domain. In addition the COULWAVE is used to investigate dissipation rates of incident free and forced long waves inside the surf zone. The results also show a strong frequency dependence, as previously suggested in the literature, which can contribute to the total rate of decay of the incident forced wave after short wave breaking.


1999 ◽  
Vol 41 (2) ◽  
pp. 121-136 ◽  
Author(s):  
Merrick C. Haller ◽  
Uday Putrevu ◽  
Joan Oltman-Shay ◽  
Robert A. Dalrymple
Keyword(s):  

2021 ◽  
Author(s):  
Fatimatou Coulibaly ◽  
Anne Vallette ◽  
Manuel Arias ◽  
François Galgani ◽  
Sylvain Coudray

<p>The Litter -TEP (Thematic Exploitation Platform), which was developed by ARGANS Ltd, with a grant of CMEMS, aimed at forecasting litter introduction by rivers and marine drift on the European North-Western Shelf so as to help local coastal communities i. schedule beach cleansing and ii.  assess the potential origin of materials collected. It needed a litter beaching model, in addition to a drift model, for that. ARGANS benefited from a grant of IFREMER through the European interregional project MARITTIMO-SICOMAR plus, to study litter beaching processes on the Corsican shoreline, owing to the extensive survey performed in 2016-2017 by IFREMER and the localization of hot spots, i.e. locations with more than 10 litter pieces on a distance of 2-to-30m alongshore. After a gross analysis of data by CMEMS for winds, currents and waves, 3 areas were selected among the 6 main litter accumulation areas, i.e. La Maddalena, Capo di Feno, the Ajaccio Gulf, the Gulf of Propriano, Bastia shores and the Agriate Desert, to try to understand the reason for the location of the litter hot spots, but focusing exclusively on i. transport by waves and ii.a swash on the shore or ii.b picked up by longshore currents along the beach then swashed (ii.a) —without knowing the litter sources, as if the sources were disposed uniformly offshore linearly along the coast.</p><p>To get the transport component, the incoming waves were simulated with the spectral model SWAN, at a 25 m resolution, using inputs from WAVEWATCH III; to get the beaching per se, i.e. the surf zone dynamics that would deposit litter on the shore, we used a SWASH model that was nested in the former at a spatial resolution of 1 to 10 m. SWASH was originally discarded in favor of the XBeach model, a short-wave averaged and wave-group resolving model that we use for civil engineering calculation, because a computing-efficient model and its ore approximations fit the purpose (motions at the shore break are dominated by long wave). Yet, despite the possibility to action the ‘surf-beat’ mode of XBeach, allowing resolving the short wave variations on the wave group scale and getting the wave-driven currents (longshore current, rip currents), long(infragravity) waves, and runup and rundown of long waves (swash), we switched back to SWASH, as it does not consider a depth-averaged flow and seemed to resolve better the incident-band (short wave) runup on intermediate dissipation shores.</p><p>In the three AOIs, 67 hotspots were identified during the ground survey, and 90 hotspots were forecasted. Out of the 67s, 59 were forecasted: 42 at the right location and 17 with slight error which is probably due to the lack of proper VHR bathy-topography and sedimentological maps to perform the simulations. 8 surveyed hotspots were not foreseen, and 31 forecasted hotspots were not identified on ground. As such, the probability of detection was 88% and the probability of false alarms 32%. Better rates are expected using the new LITTO3D lidar surveys of Corsican nearshores, and a priori knowledge of litter sources.</p>


Author(s):  
Junliang Gao ◽  
Chunyan Ji ◽  
Xiaojian Ma

In this paper, a fully nonlinear Boussinesq model is used to simulate the shoreward propagation of bichromatic wave groups over different fringing reef topographies and the subsequent low-frequency oscillations inside a harbor. Based on a low-frequency wave separation technique, the effects of the reef-face slope and the reef ridge on the bound and free long waves inside the harbor and their relative components under the condition of the lowest resonant mode are systematically investigated. For the given harbor, the given reef ridge and the range of the incident short wave amplitudes and the reef-face slopes studied in this paper, results show that the amplitude of the free long waves inside the harbor increases with the reefface slope, while the bound long waves inside the harbor is insensitive to the variation of the reef-face slope. The existence of the reef ridge can notably restrain the bound long waves inside the harbor when the incident short wave amplitudes are large, while it has little influence on the free long waves inside the harbor.


Sign in / Sign up

Export Citation Format

Share Document