Influence of Offshore Reefs on Low-Frequency Waves During Harbor Resonance

Author(s):  
Junliang Gao ◽  
Chunyan Ji ◽  
Xiaojian Ma

In this paper, a fully nonlinear Boussinesq model is used to simulate the shoreward propagation of bichromatic wave groups over different fringing reef topographies and the subsequent low-frequency oscillations inside a harbor. Based on a low-frequency wave separation technique, the effects of the reef-face slope and the reef ridge on the bound and free long waves inside the harbor and their relative components under the condition of the lowest resonant mode are systematically investigated. For the given harbor, the given reef ridge and the range of the incident short wave amplitudes and the reef-face slopes studied in this paper, results show that the amplitude of the free long waves inside the harbor increases with the reefface slope, while the bound long waves inside the harbor is insensitive to the variation of the reef-face slope. The existence of the reef ridge can notably restrain the bound long waves inside the harbor when the incident short wave amplitudes are large, while it has little influence on the free long waves inside the harbor.

Author(s):  
Zhenjun Zheng ◽  
Xiaozhou Ma ◽  
Xuezhi Huang ◽  
Yujin Dong ◽  
Guohai Dong

Abstract Long waves with periods greater than tens of seconds propagating into a harbor may be trapped and significantly amplified, thereby resulting in detrimental effects on port operations. The water surface elevation in the Hambantota Port, Sri Lanka, was measured to investigate the low-frequency oscillations and their forcing mechanisms. Results show that the port is protected well from short waves with periods less than 30 s; however, the protection against long waves with periods larger than 30 s is inadequate. The spectral analyses identified four dominant periods within the low-frequency wave range. Modal analysis based on the extended mild-slope equation shows that the measured spectrum density for some dominant periods is low because the measurement point is close to the corresponding modal lines. Correlation analysis shows that low-frequency oscillations inside the Hambantota Port are excited directly by the low-frequency waves contained within the incident waves. The low-frequency waves outside the Hambantota Port are generated from the higher-frequency gravity waves (swell and wind waves) due to nonlinear interactions. Empirical formula is adopted to estimate the low-frequency wave height outside the Hambantota Port.


2011 ◽  
Vol 1 (32) ◽  
pp. 20 ◽  
Author(s):  
Christopher Daly ◽  
Dano Roelvink ◽  
Ap Van Dongeren ◽  
Jaap Van Thiel de Vries ◽  
Robert McCall

The effect of short wave breaking on low frequency waves is investigated using two breaker formulations implemented in a time-dependent numerical model (XBeach): (1) an advective-deterministic approach (ADA) and (2) the probabilistic breaker formulation of Roelvink (1993). Previous research has shown that the ADA breaker model gives different results for the cross-shore pattern of the fraction of breaking waves, which is now shown to affect not only the short wave height but also the short wave groupiness. While RMS short wave heights are comparable to measurements using both breaker models, the ADA breaker model allows higher levels of short wave groupiness into the surf zone. It is shown that this acts as an additional forcing mechanism for low frequency waves in the shoaling and nearshore zone, which, in addition to greater levels of breaking, leads to higher values of wave set-up. These findings are dependent on the complexity of the local bathymetry. For a plane slope, the differences in the low frequency wave heights and set-up predicted by both breaker models are negligible. Where arbitrary breakpoints are present in the field of wave propagation, such as nearshore bars or reefs, the ADA model predicts higher localized set-up, indicative of greater flow over such features. Differences are even more pronounced when the incident wave regime is highly energetic.


2016 ◽  
Vol 34 (7) ◽  
pp. 609-622 ◽  
Author(s):  
Ingo Richter ◽  
Hans-Ulrich Auster ◽  
Gerhard Berghofer ◽  
Chris Carr ◽  
Emanuele Cupido ◽  
...  

Abstract. The European Space Agency's spacecraft ROSETTA has reached its final destination, comet 67P/Churyumov-Gerasimenko. Whilst orbiting in the close vicinity of the nucleus the ROSETTA magnetometers detected a new type of low-frequency wave possibly generated by a cross-field current instability due to freshly ionized cometary water group particles. During separation, descent and landing of the lander PHILAE on comet 67P/Churyumov-Gerasimenko, we used the unique opportunity to perform combined measurements with the magnetometers onboard ROSETTA (RPCMAG) and its lander PHILAE (ROMAP). New details about the spatial distribution of wave properties along the connection line of the ROSETTA orbiter and the lander PHILAE are revealed. An estimation of the observed amplitude, phase and wavelength distribution will be presented as well as the measured dispersion relation, characterizing the new type of low-frequency waves. The propagation direction and polarization features will be discussed using the results of a minimum variance analysis. Thoughts about the size of the wave source will complete our study.


2020 ◽  
Vol 2 (1) ◽  
pp. 15
Author(s):  
Matteo Postacchini ◽  
Lorenzo Melito ◽  
Alex Sheremet ◽  
Joseph Calantoni ◽  
Giovanna Darvini ◽  
...  

We illustrate recent findings on the upriver propagation of long waves entering the mouth of the Misa River (Senigallia, Italy). Such a microtidal environment has been recently studied to understand river–sea interactions: it has been found that the river forcing dominates over the marine actions in winter, especially during storms. However, upriver wave propagation is not negligible with low-frequency waves propagating upriver for distances of the order of kilometers. With the aim to better understand the behavior of low-frequency waves propagating upriver, the analysis of the present work builds on field data collected by instruments installed close to the mouth and along the final reach of the Misa River: a tide gauge, two hydrometers and an acoustic Doppler sensor. It has been here observed that the tidal forcing (periods of the order of hours/days) is significantly strong at a distance of more than one kilometer from the river mouth, while shorter waves, like seiches (periods of some hours), are less important and are supposed to largely dissipate at the estuary, although their role could be of importance during relatively short events (e.g., floods).


1984 ◽  
Vol 139 ◽  
pp. 219-235 ◽  
Author(s):  
Chiang C. Mei ◽  
Chakib Benmoussa

Unidirectional and periodically modulated short waves on a horizontal or very nearly horizontal bottom are known to be accompanied by long waves which propagate together with the envelope of the short waves at their group velocity. However, for variable depth with a horizontal lengthscale which is not too great compared with the group length, long waves of another kind are further induced. If the variation of depth is only one-dimensional and localized in a finite region, then the additional long waves can radiate away from this region, in directions which differ from those of the short waves and their envelopes. There are also critical depths which define caustics for these new long waves but not for the short waves. Thus, while obliquely incident short waves can pass over a topography, these second-order long waves may be trapped on a ridge or away from a canyon.


1986 ◽  
Vol 1 (20) ◽  
pp. 38 ◽  
Author(s):  
Jeffrey H. List

Data from a low energy swell-dominated surf zone are examined for indications that observed low frequency motions are simply group-forced bounded long waves. Time series of wave amplitude are compared to filtered long wave records through cross-spectral and cross-correlation analysis. These methods are found to have limited usefulness until long waves are separated into seaward and shoreward components. Then a clear picture of a rapidly shoaling bounded long wave emerges, with a minimum of nearly one fourth of the long wave amplitude being explainable by this type of motion close to shore. Through the zone in which waves were breaking, and incident wave amplitude variability decreased by 50%, the contribution from the bounded long wave continued to increase at a rate much greater than a simple shoaling effect. Also present are clear signs that this amplified bounded long wave is reflected from a position close to the shoreline, and is thus released from wave groups as a free, offshore-progressive wave.


Author(s):  
Carl Trygve Stansberg

The analysis of moored floating vessels in shallow water requires special attention, when compared to similar problems in deep water. In particular, low-frequency wave drift forces need to be studied. Model testing is essential in validation of numerical prediction tools for these problems. Wave-group induced low-frequency wave components is an important part of the problem. Their reproduction in laboratories needs special attention. In general, two types of low-frequency waves are present: “bound” waves following the wave groups, and “free” waves propagating with their own speed. The former is included in second-order numerical codes for floater is included in second-order numerical codes for floaters, while the latter is normally not. Therefore, identification and possible reduction of the free components is of interest. A practical way to do this in a large wave basin is described in this paper. Results from generation of bi-chromatic waves without and with correction are presented. Corrected results show a clear reduction of the free wave component.


Author(s):  
Martijn P. C. de Jong ◽  
Mart Borsboom ◽  
Jan A. M. de Bont ◽  
Bas van Vossen

The motions of (LNG) vessels moored offshore at depths ranging from about 20 to 100 m may depend significantly on the presence of (bound) low-frequency waves with periods in the order of 100 s. This is because these moored vessels show a large motion response in this frequency range and because the energy contents of low-frequency waves at these ‘intermediate’ depths is relatively large. As part of the Joint Industry Project HawaI, the operational Boussinesq-type wave model of Deltares, TRITON, was used to investigate whether this type of wave models could predict bound low-frequency waves (setdown waves) at intermediate depths. Comparison to measured and theoretical data, however, showed an underestimation of the computed levels of bound low-frequency wave heights for this depth range by a factor 2 to 4. Recently, additional tests were made with TRITON in situations for which the model has been designed: coastal engineering applications in shallow water (depths up to at most 20 m). These also showed an underestimation of the bound low-frequency wave heights, albeit smaller, up to a factor 2. In view of the importance of the energy contained in the low-frequency range for certain nearshore and shoreline processes, such as morphological processes, this underestimation is also of concern in coastal engineering. This triggered the development of a higher-order extension of the TRITON model equations (Borsboom, 2008, Wellens, 2010), with the aim to improve the accuracy of the model for long waves while still keeping computational times within acceptable (operational) limits. This paper reports on the usefulness of the extended model for the field of application considered in JIP HawaI/II: providing wave data for calculating the motions of vessels moored in intermediate depths. The results show a significant improvement of the modeling of nonlinear wave dynamics, including the prediction of bound low-frequency waves. This means that the model extension is an important step towards an operational Boussinesq-type wave model with sufficient accuracy in both the wave-frequency (sea, swell) and the low-frequency range for applications in intermediate depths.


1997 ◽  
Vol 58 (2) ◽  
pp. 345-366 ◽  
Author(s):  
QINGHUAN LUO ◽  
D. B. MELROSE

The effect of a beam of radio waves of very high brightness passing through a cold, magnetized, electron–positron plasma is discussed. The properties of the natural wave modes in such a plasma are summarized, and approximate forms for the nonlinear response tensor are written down. Photon-beam-induced instabilities of low-frequency waves in the pair plasma are analysed in the random-phase approximation. When three-wave interactions involve two high-frequency waves in the same mode and a low-frequency wave in a different mode, wave–wave interactions are similar to wave–particle interactions in that photons act like particles that emit and absorb low-frequency waves. The absorption coefficients for various low-frequency waves due to a photon beam are evaluated. In a pure electron–positron plasma, photon-beam-induced instabilities can be effective only when either the high-frequency or the low-frequency waves are strongly modified by the magnetic field. The growth of the low-frequency waves is most effective when the high-frequency photon beam has a frequency close to the cyclotron frequency.


Sign in / Sign up

Export Citation Format

Share Document