scholarly journals Fixation probabilities for simple digraphs

Author(s):  
Burton Voorhees ◽  
Alex Murray

The problem of finding birth–death fixation probabilities for configurations of normal and mutants on an N -vertex graph is formulated in terms of a Markov process on the 2 N -dimensional state space of possible configurations. Upper and lower bounds on the fixation probability after any given number of iterations of the birth–death process are derived in terms of the transition matrix of this process. Consideration is then specialized to a family of graphs called circular flows, and we present a summation formula for the complete bipartite graph, giving the fixation probability for an arbitrary configuration of mutants in terms of a weighted sum of the single-vertex fixation probabilities. This also yields a closed-form solution for the fixation probability of bipartite graphs. Three entropy measures are introduced, providing information about graph structure. Finally, a number of examples are presented, illustrating cases of graphs that enhance or suppress fixation probability for fitness r >1 as well as graphs that enhance fixation probability for only a limited range of fitness. Results are compared with recent results reported in the literature, where a positive correlation is observed between vertex degree variance and fixation probability for undirected graphs. We show a similar correlation for directed graphs, with correlation not directly to fixation probability but to the difference between fixation probability for a given graph and a complete graph.

2005 ◽  
Vol 42 (01) ◽  
pp. 185-198 ◽  
Author(s):  
Erik A. Van Doorn ◽  
Alexander I. Zeifman

We study birth-death processes on the nonnegative integers, where {1, 2,…} is an irreducible class and 0 an absorbing state, with the additional feature that a transition to state 0 may occur from any state. We give a condition for absorption (extinction) to be certain and obtain the eventual absorption probabilities when absorption is not certain. We also study the rate of convergence, as t → ∞, of the probability of absorption at time t, and relate it to the common rate of convergence of the transition probabilities that do not involve state 0. Finally, we derive upper and lower bounds for the probability of absorption at time t by applying a technique that involves the logarithmic norm of an appropriately defined operator.


2005 ◽  
Vol 42 (1) ◽  
pp. 185-198 ◽  
Author(s):  
Erik A. Van Doorn ◽  
Alexander I. Zeifman

We study birth-death processes on the nonnegative integers, where {1, 2,…} is an irreducible class and 0 an absorbing state, with the additional feature that a transition to state 0 may occur from any state. We give a condition for absorption (extinction) to be certain and obtain the eventual absorption probabilities when absorption is not certain. We also study the rate of convergence, as t → ∞, of the probability of absorption at time t, and relate it to the common rate of convergence of the transition probabilities that do not involve state 0. Finally, we derive upper and lower bounds for the probability of absorption at time t by applying a technique that involves the logarithmic norm of an appropriately defined operator.


2015 ◽  
Vol 52 (1) ◽  
pp. 278-289 ◽  
Author(s):  
Erik A. van Doorn

We study the decay parameter (the rate of convergence of the transition probabilities) of a birth-death process on {0, 1, …}, which we allow to evanesce by escape, via state 0, to an absorbing state -1. Our main results are representations for the decay parameter under four different scenarios, derived from a unified perspective involving the orthogonal polynomials appearing in Karlin and McGregor's representation for the transition probabilities of a birth-death process, and the Courant-Fischer theorem on eigenvalues of a symmetric matrix. We also show how the representations readily yield some upper and lower bounds that have appeared in the literature.


1985 ◽  
Vol 17 (3) ◽  
pp. 514-530 ◽  
Author(s):  
Erik A. Van Doorn

This paper is concerned with two problems in connection with exponential ergodicity for birth-death processes on a semi-infinite lattice of integers. The first is to determine from the birth and death rates whether exponential ergodicity prevails. We give some necessary and some sufficient conditions which suffice to settle the question for most processes encountered in practice. In particular, a complete solution is obtained for processes where, from some finite state n onwards, the birth and death rates are rational functions of n. The second, more difficult, problem is to evaluate the decay parameter of an exponentially ergodic birth-death process. Our contribution to the solution of this problem consists of a number of upper and lower bounds.


2015 ◽  
Vol 52 (01) ◽  
pp. 278-289 ◽  
Author(s):  
Erik A. van Doorn

We study the decay parameter (the rate of convergence of the transition probabilities) of a birth-death process on {0, 1, …}, which we allow to evanesce by escape, via state 0, to an absorbing state -1. Our main results are representations for the decay parameter under four different scenarios, derived from a unified perspective involving the orthogonal polynomials appearing in Karlin and McGregor's representation for the transition probabilities of a birth-death process, and the Courant-Fischer theorem on eigenvalues of a symmetric matrix. We also show how the representations readily yield some upper and lower bounds that have appeared in the literature.


2006 ◽  
Vol 18 (5) ◽  
pp. 1197-1214 ◽  
Author(s):  
Anne C. Smith ◽  
Peter Smith

With the development of multielectrode recording techniques, it is possible to measure the cell firing patterns of multiple neurons simultaneously, generating a large quantity of data. Identification of the firing patterns within these large groups of cells is an important and a challenging problem in data analysis. Here, we consider the problem of measuring the significance of a repeat in the cell firing sequence across arbitrary numbers of cells. In particular, we consider the question, given a ranked order of cells numbered 1 to N, what is the probability that another sequence of length n contains j consecutive increasing elements? Assuming each element of the sequence is drawn with replacement from the numbers 1 through N, we derive a recursive formula for the probability of the sequence of length j or more. For n < 2j, a closed-form solution is derived. For n ≥ 2j, we obtain upper and lower bounds for these probabilities for various combinations of parameter values. These can be computed very quickly. For a typical case with small N (<10) and large n (<3000), sequences of 7 and 8 are statistically very unlikely. A potential application of this technique is in the detection of repeats in hippocampal place cell order during sleep. Unlike most previous articles on increasing runs in random lists, we use a probability approach based on sets of overlapping sequences.


1985 ◽  
Vol 17 (03) ◽  
pp. 514-530 ◽  
Author(s):  
Erik A. Van Doorn

This paper is concerned with two problems in connection with exponential ergodicity for birth-death processes on a semi-infinite lattice of integers. The first is to determine from the birth and death rates whether exponential ergodicity prevails. We give some necessary and some sufficient conditions which suffice to settle the question for most processes encountered in practice. In particular, a complete solution is obtained for processes where, from some finite state n onwards, the birth and death rates are rational functions of n. The second, more difficult, problem is to evaluate the decay parameter of an exponentially ergodic birth-death process. Our contribution to the solution of this problem consists of a number of upper and lower bounds.


2014 ◽  
Vol 11 (99) ◽  
pp. 20140606 ◽  
Author(s):  
Laura Hindersin ◽  
Arne Traulsen

Evolutionary dynamics on graphs can lead to many interesting and counterintuitive findings. We study the Moran process, a discrete time birth–death process, that describes the invasion of a mutant type into a population of wild-type individuals. Remarkably, the fixation probability of a single mutant is the same on all regular networks. But non-regular networks can increase or decrease the fixation probability. While the time until fixation formally depends on the same transition probabilities as the fixation probabilities, there is no obvious relation between them. For example, an amplifier of selection, which increases the fixation probability and thus decreases the number of mutations needed until one of them is successful, can at the same time slow down the process of fixation. Based on small networks, we show analytically that (i) the time to fixation can decrease when links are removed from the network and (ii) the node providing the best starting conditions in terms of the shortest fixation time depends on the fitness of the mutant. Our results are obtained analytically on small networks, but numerical simulations show that they are qualitatively valid even in much larger populations.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008695
Author(s):  
Benjamin Allen ◽  
Christine Sample ◽  
Patricia Steinhagen ◽  
Julia Shapiro ◽  
Matthew King ◽  
...  

A population’s spatial structure affects the rate of genetic change and the outcome of natural selection. These effects can be modeled mathematically using the Birth-death process on graphs. Individuals occupy the vertices of a weighted graph, and reproduce into neighboring vertices based on fitness. A key quantity is the probability that a mutant type will sweep to fixation, as a function of the mutant’s fitness. Graphs that increase the fixation probability of beneficial mutations, and decrease that of deleterious mutations, are said to amplify selection. However, fixation probabilities are difficult to compute for an arbitrary graph. Here we derive an expression for the fixation probability, of a weakly-selected mutation, in terms of the time for two lineages to coalesce. This expression enables weak-selection fixation probabilities to be computed, for an arbitrary weighted graph, in polynomial time. Applying this method, we explore the range of possible effects of graph structure on natural selection, genetic drift, and the balance between the two. Using exhaustive analysis of small graphs and a genetic search algorithm, we identify families of graphs with striking effects on fixation probability, and we analyze these families mathematically. Our work reveals the nuanced effects of graph structure on natural selection and neutral drift. In particular, we show how these notions depend critically on the process by which mutations arise.


Author(s):  
M Broom ◽  
J Rychtář

There is a growing interest in the study of evolutionary dynamics on populations with some non-homogeneous structure. In this paper we follow the model of Lieberman et al . (Lieberman et al . 2005 Nature 433 , 312–316) of evolutionary dynamics on a graph. We investigate the case of non-directed equally weighted graphs and find solutions for the fixation probability of a single mutant in two classes of simple graphs. We further demonstrate that finding similar solutions on graphs outside these classes is far more complex. Finally, we investigate our chosen classes numerically and discuss a number of features of the graphs; for example, we find the fixation probabilities for different initial starting positions and observe that average fixation probabilities are always increased for advantageous mutants as compared with those of unstructured populations.


Sign in / Sign up

Export Citation Format

Share Document