scholarly journals Ruga-formation instabilities of a graded stiffness boundary layer in a neo-Hookean solid

Author(s):  
Mazen Diab ◽  
Kyung-Suk Kim

We present an analysis of ruga-formation instabilities arising in a graded stiffness boundary layer of a neo-Hookean half space, caused by lateral plane-strain compression. In this study, we represent the boundary layer by a stiffness distribution exponentially decaying from a surface value Q 0 to a bulk value Q B with a decay length of 1/ a . Then, the normalized perturbation wavenumber, k ¯ = k / a , and the compressive strain, ε , control formation of a wrinkle pattern and its evolution towards crease or fold patterns for every stiffness ratio η = Q B / Q 0 . Our first-order instability analysis reveals that the boundary layer exhibits self-selectivity of the critical wavenumber for nearly the entire range of 0< η <1, except for the slab ( η =0) and homogeneous half-space ( η =1) limits. Our second-order analysis supplemented by finite-element analysis further uncovers various instability-order-dependent bifurcations, from stable wrinkling of the first order to creasing of the infinite-order cascade instability, which construct diverse ruga phases in the three-dimensional parameter space of ( ε , k ¯ , η ) . Competition among film-buckling, local film-crease and global substrate-crease modes of energy release produces diverse ruga-phase domains. Our analysis also reveals the subcritical crease states of the homogeneous half space. Our results are, then, compared with the behaviour of equivalent bilayer systems for thin-film applications.

2019 ◽  
Vol 230 (3) ◽  
pp. 1159-1179 ◽  
Author(s):  
Chao He ◽  
Shunhua Zhou ◽  
Peijun Guo ◽  
Quanmei Gong

Geophysics ◽  
1984 ◽  
Vol 49 (10) ◽  
pp. 1754-1759 ◽  
Author(s):  
Walter L. Anderson

A new method is presented that rapidly evaluates the many Green’s tensor integrals encountered in three‐dimensional electromagnetic modeling using an integral equation. Application of a fast Hankel transform (FHT) algorithm (Anderson, 1982) is the basis for the new solution, where efficient and accurate computation of Hankel transforms are obtained by related and lagged convolutions (linear digital filtering). The FHT algorithm is briefly reviewed and compared to earlier convolution algorithms written by the author. The homogeneous and layered half‐space cases for the Green’s tensor integrals are presented in a form so that the FHT can be easily applied in practice. Computer timing runs comparing the FHT to conventional direct convolution methods are discussed, where the FHT’s performance was about 6 times faster for a homogeneous half‐space, and about 108 times faster for a five‐layer half‐space. Subsequent interpolation after the FHT is called is required to compute specific values of the tensor integrals at selected transform arguments; however, due to the relatively small lagged convolution interval used (same as the digital filter’s), a simple and fast interpolation is sufficient (e.g., by cubic splines).


2007 ◽  
Vol 18 (6) ◽  
pp. 659-677 ◽  
Author(s):  
A. HLOD ◽  
A. C. T. AARTS ◽  
A. A. F. van de VEN ◽  
M. A. PELETIER

The stationary flow of a jet of a Newtonian fluid that is drawn by gravity onto a moving surface is analyzed. It is assumed that the jet has a convex shape and hits the moving surface tangentially. The flow is modelled by a third-order ODE on a domain of unknown length and with an additional integral condition. By solving part of the equation explicitly, the problem is reformulated as a first-order ODE with an integral constraint. The corresponding existence region in the three-dimensional parameter space is characterized in terms of an easily calculable quantity. In a qualitative sense, the results from the model are found to correspond with experimental observations.


1965 ◽  
Vol 22 (3) ◽  
pp. 587-598 ◽  
Author(s):  
L. Sowerby

A series expansion is derived for the three-dimensional boundary-layer flow over a flat plate, arising from a general main-stream flow over the plate. The series involved are calculated as far as terms of order ξ2, where ξ is a non-dimensional parameter defining distance measured from the leading edge of the plate. The results are applied to an example in which the main stream arises from the disturbance of a uniform stream by a circular cylinder mounted downstream from the leading edge of the plate, the axis of the cylinder being normal to the plate. Calculations are made for shear stress components on the plate, and for the deviation of direction of the limiting streamlines from those in the main stream.


Author(s):  
R. Chebakov ◽  
J. Kaplunov ◽  
G. A. Rogerson

The dynamic response of a homogeneous half-space, with a traction-free surface, is considered within the framework of non-local elasticity. The focus is on the dominant effect of the boundary layer on overall behaviour. A typical wavelength is assumed to considerably exceed the associated internal lengthscale. The leading-order long-wave approximation is shown to coincide formally with the ‘local’ problem for a half-space with a vertical inhomogeneity localized near the surface. Subsequent asymptotic analysis of the inhomogeneity results in an explicit correction to the classical boundary conditions on the surface. The order of the correction is greater than the order of the better-known correction to the governing differential equations. The refined boundary conditions enable us to evaluate the interior solution outside a narrow boundary layer localized near the surface. As an illustration, the effect of non-local elastic phenomena on the Rayleigh wave speed is investigated.


1991 ◽  
Vol 58 (2) ◽  
pp. 347-353 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper describes calculations for repeated, frictionless, three-dimensional rolling contact, for a relative peak pressure (po/k) of 6.0 (above the shakedown limit) for a circular contact patch. This analysis was carried out for two material responses, elastic-perfectly plastic (EPP) and elastic-linear-kinematic-hardening plastic (ELKP), using the elasto-plastic finite element model developed earlier. The ELKP material parameters are those appropriate for hardened bearing steel. Frictionless three-dimensional rolling contact is simulated by repeatedly translating a Hertzian pressure distribution across the surface of an elasto-plastic half space. The half space is represented by a finite mesh with elastic boundaries. The paper describes the complex stress state existing in the half space and the attending plasticity, as the load translates. The calculations present the distortion of the rim, the residual stress-strain distributions, stress-strain histories, and the cyclic plastic strain increments in the vicinity of the contact. Compared with the analyses at the shakedown limit, higher residual stresses and strains are observed.


Sign in / Sign up

Export Citation Format

Share Document