Elasto-Plastic Finite Element Analysis of Three-Dimensional Pure Rolling Contact Above the Shakedown Limit

1991 ◽  
Vol 58 (2) ◽  
pp. 347-353 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper describes calculations for repeated, frictionless, three-dimensional rolling contact, for a relative peak pressure (po/k) of 6.0 (above the shakedown limit) for a circular contact patch. This analysis was carried out for two material responses, elastic-perfectly plastic (EPP) and elastic-linear-kinematic-hardening plastic (ELKP), using the elasto-plastic finite element model developed earlier. The ELKP material parameters are those appropriate for hardened bearing steel. Frictionless three-dimensional rolling contact is simulated by repeatedly translating a Hertzian pressure distribution across the surface of an elasto-plastic half space. The half space is represented by a finite mesh with elastic boundaries. The paper describes the complex stress state existing in the half space and the attending plasticity, as the load translates. The calculations present the distortion of the rim, the residual stress-strain distributions, stress-strain histories, and the cyclic plastic strain increments in the vicinity of the contact. Compared with the analyses at the shakedown limit, higher residual stresses and strains are observed.

1990 ◽  
Vol 57 (1) ◽  
pp. 57-65 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper describes a three-dimensional elastoplastic finite element model of repeated, frictionless rolling contact. The model treats a sphere rolling on an elastic-perfectly plastic and an elastic-linear-kinematic-hardening plastic, semi-infinite half space. The calculations are for a relative peak pressure (po/k) = 4.68 (the theoretical shakedown limit for perfect plasticity). Three-dimensional rolling contact is simulated by repeatedly translating a hemispherical (Hertzian) pressure distribution across an elastoplastic semi-infinite half space. The semi-infinite half space is represented by a finite mesh with elastic boundaries. The calculations describe the distortion of the rim, the residual stress-strain distributions, stress-strain histories, and the cyclic plastic strain ranges in the vicinity of the contact.


1991 ◽  
Vol 113 (3) ◽  
pp. 434-441 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper presents an elasto-plastic analysis of the repeated, frictionless, three-dimensional rolling contact similar to the ones produced by the rail-wheel geometry. This paper treats an elliptical contact rolling across a semi-infinite half space. The contact shape and loading: semi-major axis (in the rolling direction), w1 = 8 mm, and semi-minor axis, w2 = 5.88 mm, reflect standard rail and wheel curvatures and a wheel load of 149 KN (33,000 lb). A three-dimensional, elasto-plastic finite element model, developed earlier, is employed together with the elastic-linear-kinematic-hardening-plastic (ELKP) idealization of the cyclic plastic behaviour of a material similar to rail and wheel steels. The calculations present the displacements, the stress-strain distributions, stress-plastic strain histories and the plastic strain ranges in the half-space. The cyclic plasticity approaches a steady state after one contact with further contacts producing open but fully reversed stress-strain hysteresis loops, i.e., plastic shakedown.


1995 ◽  
Vol 117 (4) ◽  
pp. 729-736 ◽  
Author(s):  
M. Howell ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
D. L. McDowell

A Mroz image point, two surface, nonlinear-kinematic-hardening-plastic (MNKP) representation of bearing steel is inserted into a finite element model of 2-dimensional, line contact for pure rolling. The calculations are compared with previous results for the same contact pressure derived for elastic-linear-kinematic-hardening-plastic (ELKP) behavior. The residual stress, deformation, and the connection between continuing cyclic deformation, etching bands, and cracks are analyzed. Unlike the ELKP constitutive properties, the MNKP behavior displays a distinct transient region which results in higher residual stresses.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


1985 ◽  
Vol 107 (1) ◽  
pp. 231-237 ◽  
Author(s):  
A. Kaufman

A simplified inelastic analysis computer program (ANSYMP) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects can be calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials, and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.


2008 ◽  
Vol 130 (6) ◽  
Author(s):  
Matthew C. Paul ◽  
Liam P. Glennon ◽  
Thomas E. Baer ◽  
Thomas D. Brown

Scratches on the metal bearing surface of metal-on-polyethylene total joint replacements have been found to appreciably accelerate abrasive/adhesive wear of polyethylene, and constitute a source of the considerable variability of wear rate seen within clinical cohorts. Scratch orientation with respect to the local direction of relative surface sliding is presumably a factor affecting instantaneous debris liberation during articulation. A three-dimensional local finite element model was developed, of orientation-specific polyethylene articulation with a scratched metal counterface, to explore continuum-level stress/strain parameters potentially correlating with the orientation dependence of scratch wear in a corresponding physical experiment. Computed maximum stress values exceeded the yield strength of ultra-high molecular weight polyethylene (UHMWPE) for all scratch orientations but did not vary appreciably among scratch orientations. Two continuum-level parameters judged most consistent overall with the direction dependence of experimental wear were (1) cumulative compressive total normal strain in the direction of loading, and (2) maximum instantaneous compressive total normal strain transverse to the sliding direction. Such stress/strain metrics could be useful in global computational models of wear acceleration, as surrogates to incorporate anisotropy of local metal surface roughening.


1998 ◽  
Vol 120 (2) ◽  
pp. 143-148 ◽  
Author(s):  
N. Huber ◽  
Ch. Tsakmakis

Using the Finite Element Method, an analysis is given of the indentation of an elasticplastic half-space by a rigid sphere. In particular, attention is focused on the effect of hardening rules on the material response. The materials considered are supposed to exhibit isotropic and kinematic hardening. Moreover, it is shown that the possibility of similar behavior due to effects of friction can be ruled out.


Sign in / Sign up

Export Citation Format

Share Document