scholarly journals Quench dynamics of a disordered array of dissipative coupled cavities

Author(s):  
C. Creatore ◽  
R. Fazio ◽  
J. Keeling ◽  
H. E. Türeci

We investigate the mean-field dynamics of a system of interacting photons in an array of coupled cavities in the presence of dissipation and disorder. We follow the evolution of an initially prepared Fock state, and show how the interplay between dissipation and disorder affects the coherence properties of the cavity emission, and show that these properties can be used as signatures of the many-body phase of the whole array.

Author(s):  
Klaus Morawetz

The many-body theory combines ideas of thermodynamics with ideas of mechanics. In this introductory chapter, the symbiosis of these two different fields of physics is demonstrated on overly simplified models. We explore the principles of finite-range forces to show the twofold nature of virial corrections. Infrequent collisions with a large deflection angle lead to collision integrals and rather frequent encounters with deflections on small angles act as a mean field. The (mean-field) corrections to drift result in the internal pressure and the nonlocal correction to the collisions results in the effect of the molecular volumes. The concept of distribution functions is introduced and the measure of information as entropy. The binary correlation allows one to distinguish tails and cores of the interaction potential. The concept of binary correlation is thus behind the intuitive picture of the kinetic equation.


Author(s):  
Kay Kirkpatrick ◽  
Simone Rademacher ◽  
Benjamin Schlein

AbstractWe consider the many-body quantum evolution of a factorized initial data, in the mean-field regime. We show that fluctuations around the limiting Hartree dynamics satisfy large deviation estimates that are consistent with central limit theorems that have been established in the last years.


1999 ◽  
Vol 579 ◽  
Author(s):  
D.J. Dean ◽  
M.R. Strayer ◽  
J.C. Wells

ABSTRACTWe describe computational methods for the theoretical study of explicit correlations beyond the mean field in excitons confined in semiconductor quantum dots in terms of the Auxiliary-Field Monte Carlo (AFMC) method [1]. Using AFMC, the many-body problem is formulated as a Feynman path integral at finite temperatures and evaluated to numerical precision. This approach is ideally suited for implementation on high-performance parallel computers. Our strategy is to generate a set of mean-field states via the Hartree-Fock method for use as a basis for the AFMC calculations. We present preliminary results.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1342
Author(s):  
Ofir E. Alon

A solvable model of a periodically driven trapped mixture of Bose–Einstein condensates, consisting of N1 interacting bosons of mass m1 driven by a force of amplitude fL,1 and N2 interacting bosons of mass m2 driven by a force of amplitude fL,2, is presented. The model generalizes the harmonic-interaction model for mixtures to the time-dependent domain. The resulting many-particle ground Floquet wavefunction and quasienergy, as well as the time-dependent densities and reduced density matrices, are prescribed explicitly and analyzed at the many-body and mean-field levels of theory for finite systems and at the limit of an infinite number of particles. We prove that the time-dependent densities per particle are given at the limit of an infinite number of particles by their respective mean-field quantities, and that the time-dependent reduced one-particle and two-particle density matrices per particle of the driven mixture are 100% condensed. Interestingly, the quasienergy per particle does not coincide with the mean-field value at this limit, unless the relative center-of-mass coordinate of the two Bose–Einstein condensates is not activated by the driving forces fL,1 and fL,2. As an application, we investigate the imprinting of angular momentum and its fluctuations when steering a Bose–Einstein condensate by an interacting bosonic impurity and the resulting modes of rotations. Whereas the expectation values per particle of the angular-momentum operator for the many-body and mean-field solutions coincide at the limit of an infinite number of particles, the respective fluctuations can differ substantially. The results are analyzed in terms of the transformation properties of the angular-momentum operator under translations and boosts, and as a function of the interactions between the particles. Implications are briefly discussed.


2011 ◽  
Vol 20 (02) ◽  
pp. 252-258 ◽  
Author(s):  
LUDOVIC BONNEAU ◽  
JULIEN LE BLOAS ◽  
PHILIPPE QUENTIN ◽  
NIKOLAY MINKOV

In self-consistent mean-field approaches, the description of odd-mass nuclei requires to break the time-reversal invariance of the underlying one-body hamiltonian. This induces a polarization of the even-even core to which the odd nucleon is added. To properly describe the pairing correlations (in T = 1 and T = 0 channels) in such nuclei, we implement the particle-number conserving Higher Tamm–Dancoff approximation with a residual δ interaction in each isospin channel by restricting the many-body basis to two-particle–two–hole excitations of pair type (nn, pp and np) on top of the Hartree–Fock solution. We apply this approach to the calculation of two ground-state properties of well-deformed nuclei |Tz| = 1 nuclei around 24 Mg and 48 Cr , namely the isovector odd-even binding-energy difference and the magnetic dipole moment, focusing on the impact of pairing correlations.


Author(s):  
L. Zanelli ◽  
F. Mandreoli ◽  
F. Cardin

AbstractWe present, through weak KAM theory, an investigation of the stationary Hartree equation in the periodic setting. More in details, we study the Mean Field asymptotics of quantum many body operators thanks to various integral identities providing the energy of the ground state and the minimum value of the Hartree functional. Finally, the ground state of the multiple-well case is studied in the semiclassical asymptotics thanks to the Agmon metric.


2006 ◽  
Vol 15 (05) ◽  
pp. 1141-1148 ◽  
Author(s):  
LU GUO ◽  
FUMIHIKO SAKATA ◽  
EN-GUANG ZHAO ◽  
J. A. MARUHN

A non-convergent difficulty near level-repulsive region is discussed within the self-consistent mean-field theory. It is shown by numerical and analytic studies that the mean-field is not realized in the many-fermion system when quantum fluctuations coming from two-body residual interaction and quadrupole deformation are larger than an energy difference between two avoided crossing orbits. An analytic condition indicating a limitation of the mean-field concept is derived for the first time.


2011 ◽  
Vol 25 (01) ◽  
pp. 73-82 ◽  
Author(s):  
YOICHIRO HASHIZUME ◽  
MASUO SUZUKI

In this study, we have found a new random ordered phase in isotropic models with many-body interactions. Spin correlations between neighboring planes are rigorously shown to form a long-range order, namely coplanar spin-pair order, using a unitary transformation, and the phase transition of this new order has been analyzed on the bases of the mean-field theory and correlation identities. In the systems with regular 4-body interactions, the transition temperature T c is obtained as T c = (z-2)J/k B , and the field conjugate to this new order parameter is found to be H2. In contrast, the corresponding physical quantities in the systems with random 4-body interactions are given by [Formula: see text] and H4, respectively. Scaling forms of order parameters for regular or random 4-body interactions are expressed by the same scaling functions in the systems with regular or random 2-body interactions, respectively. Furthermore, we have obtained the nonlinear susceptibilities in the regular and random systems, where the coefficient χnl of H3 in the magnetization shows positive divergence in the regular model, while the coefficient χ7 of H7 in the magnetization shows negative divergence in the random model.


Sign in / Sign up

Export Citation Format

Share Document