Self-similar solutions for high-energy density radiative transfer with separate ion and electron temperatures

Author(s):  
William Bennett ◽  
Ryan G. McClarren

We consider a non-equilibrium plasma radiatively heated by an external source in the high-energy density regime. It is shown that self-similar solutions resembling the classic Marshak wave exist for the ion and electron temperatures, if the electron–ion coupling coefficient scales inversely proportional to either the time from when the heating begins or to the square of the distance from the surface of the plasma. We discuss how such a coupling coefficient may arise, and demonstrate that these solutions are also useful for verifying simulation codes that treat radiation–electron–ion coupling in high-energy density plasmas.

2021 ◽  
Vol 126 (8) ◽  
Author(s):  
G. Pérez-Callejo ◽  
E. V. Marley ◽  
D. A. Liedahl ◽  
L. C. Jarrott ◽  
G. E. Kemp ◽  
...  

2009 ◽  
Vol 16 (5) ◽  
pp. 058101 ◽  
Author(s):  
J. E. Bailey ◽  
G. A. Rochau ◽  
R. C. Mancini ◽  
C. A. Iglesias ◽  
J. J. MacFarlane ◽  
...  

2015 ◽  
Vol 115 (20) ◽  
Author(s):  
J. A. Frenje ◽  
P. E. Grabowski ◽  
C. K. Li ◽  
F. H. Séguin ◽  
A. B. Zylstra ◽  
...  

2017 ◽  
Vol 96 (4) ◽  
Author(s):  
Chang Liu ◽  
William Fox ◽  
Amitava Bhattacharjee ◽  
Alexander G. R. Thomas ◽  
Archis S. Joglekar

2019 ◽  
Vol 122 (1) ◽  
Author(s):  
J. A. Frenje ◽  
R. Florido ◽  
R. Mancini ◽  
T. Nagayama ◽  
P. E. Grabowski ◽  
...  

1992 ◽  
Vol 283 ◽  
Author(s):  
H. J. Kim ◽  
James S. Im ◽  
Michael O. Thompson

ABSTRACTUsing planar view transmission electron microscope (TEM) and transient reflectance (TR) analyses, we have investigated the excimer laser crystallization of amorphous silicon (a-Si) films on SiO2. Emphasis was placed on characterizing the microstructures of the single-shot irradiated materials, as a function of the energy density of the laser pulse and the temperature of the substrate. The dependence of the grain size and melt duration as a function of energy density revealed two major crystallization regimes. In the low energy density regime, the average grain size first increases gradually with increases in the laser energy density. In the high energy density regime, on the other hand, a very fine grained microstructure, which is relatively insensitive to variations in the laser energy density, is obtained. In addition, we have discovered that at the transition between these two regimes an extremely small experimental window exists, within which an exceedingly large grain-sized polycrystalline film is obtained. We suggest a liquid phase growth model for this phenomenon, which is based on the regrowth of crystals from the residual solid islands at the oxide interface.


Sign in / Sign up

Export Citation Format

Share Document