scholarly journals Action potentials from the isolated nerve cord of the earthworm

Though a great deal of work has been done upon the earthworm, the only investigation of giant fibre activity in the isolated nerve cord appears to be that of Eccles, Granit & Young (1933). As this account is only two pages long and contains no records, it seemed worth while to repeat the work, and § A gives in full my evidence, which supports their conclusions, and doubtless is what they have already observed. Their identification of the active structures with particular giant fibres was rather convincingly inferred, and this has now been confirmed by direct micromanipulation as described in § B.

1970 ◽  
Vol 102 (9) ◽  
pp. 1163-1168 ◽  
Author(s):  
W. D. Seabrook

AbstractSchistocerca gregaria possess four neurones of giant fibre proportions within the abdominal ventral nerve cord. These fibres arise from single cell bodies in the terminal ganglionic mass and pass without interruption to the metathoracic ganglion. Fibres become reduced in diameter when passing through a ganglion. Branching of the giant fibres occurs in abdominal ganglia 6 and 7.


The giant nerve fibres, which form so prominent a feature in the transverse section of the nerve cord of many Annelids, were first observed in these animals by Clapaède in 1861, who, however, regarded them as canals. They were first recognised as nervous elements—“riesige dunkelrandige Nervenfasern”—by Leydig in 1864. Since then their nervous nature has been almost alternately affirmed and denied, and many widely divergent views have been advanced regarding their morphology and function. The connection of giant fibres with certain giant nerve cells was first shown in the case of Halla parthenopeia , by Spengel, in 1881. Although many other workers have investigated these elements, information is still lacking regarding several fundamental points of their structure. For instance, nothing is known regarding the neurofibrillæ of the giant cells, and although these conducting elements have been seen by five observers in the giant fibres of earthworms, there is a striking difference in their accounts: two of them refer to the presence of several neurofibrillæ, while the others describe or figure only a single fibril in each giant fibre. Further, no information is available regarding the place and mode of origin of these neurofibrillæ or their relations to other nerve elements. This defect is, no doubt, due largely to the difficulties attending the investigation of these remarkable cells and fibres; indeed, the failure of the methods usually adopted for staining nerve cells and fibres in other animals, to disclose nervous elements in the giant cells and fibres, has been held, for instance, by yon Lenhossék and Retzius, to disprove their nervous nature. The present investigation was commenced in 1900 with the view of determining the character and arrangement of the neurofibrillæ of the giant cells and fibres and the relations of these elements to the other elements of the nerve cord.


1962 ◽  
Vol 39 (2) ◽  
pp. 219-227
Author(s):  
M. B. V. ROBERTS

1. A nerve-muscle preparation including the longitudinal musculature and the giant fibres in the nerve cord of the earthworm is described. 2. Direct stimulation of the nerve cord with single shocks of increasing intensity results in two types of response: (a) a low threshold, very small twitch, resulting from a single impulse in the median giant fibre, and (b) a higher threshold, slightly larger twitch, resulting from single impulses in the median and lateral giant fibres. Both responses are highly susceptible to fatigue. 3. Stimulation of the body surface evokes a much more powerful contraction which is associated with a burst of impulses in the giant fibre. The strength of the contraction depends upon the number of impulses in the burst and this in turn upon the intensity and duration of the stimulus.


The present work confirms the conclusion of Friedländer and others that the giant fibres mediate the end-to-end shortening reaction in the earthworm. The chief concern has been to investigate Stough’s claim that the median giant fibre conducts impulses only in the direction from head to tail and the lateral giants only in the reverse direction. Two methods have been employed. ( a ) The nerve cord was exposed at each end of the worm, and electrical records taken simultaneously from the two extremities when the surface of the worm was touched at different places. The results were usually a train of impulses in one or other giant fibre, and it was found that whenever an impulse appeared at one end of a given fibre, it always appeared at the other end of the same fibre. Each fibre, therefore, when it conducted at all, always conducted in both directions. Sensory nerves from the head appeared only connected to the median giant, since stimulation anterior to the clitellum never resulted in lateral fibre activity. Similarly, the tail appeared only to join with the lateral giant fibres. ( b ) Stough’s own method was used, and his observations confirmed, extended and re-interpreted. Either the median or both lateral fibres were divided in one segment. The success of this operation could be judged by leading off the giant fibre responses from the undissected worm (figure 5). Next day, when the worm had recovered, the shortening reflex was observed when the worm was touched at the head, the tail, or in the middle. The shortening was either throughout, or was arrested at the operation site, depending upon whether the active giant fibre was the intact or the damaged one. The results are summarized on p. 119. From both the head and the tail Stough’s observations are confirmed, and it is agreed that impulses from the head are conducted back by the median giant alone. The absence of impulses in the laterals might be due to contrary one-way conduction as Stough assumes, or to the absence of their sensory connexion with the head. But ( a ) above shows that the latter is correct, and the same must be concluded from touching the middle region of the worm, which apparently Stough did not do, for this part connects with the lateral giants, and thus affords a demonstration that these fibres may also conduct antero-posteriorly. The difference in function of the separate giant fibres, therefore, is probably related to their difference in sensory distribution.


1970 ◽  
Vol 52 (3) ◽  
pp. 593-601
Author(s):  
K. J. FRIEDMAN ◽  
A. D. CARLSON

1. The study of insect curarization in the cockroach, Periplaneta americana, has been continued. The application of curare solution (0.032 M dTC) to the nerve cord produced blockage of action-potential conduction in the giant fibres lying within the nerve cord. 2. The application of curare solution to the cerci prevented the recording of action potentials from the cercal nerves of the organism. Application of dTC to the cercal nerve-A6 region of the cockroach prevented giant fibres from responding to electrical stimulation of the cercal nerves. These results are interpreted as indicating that curare blocks the conduction of action potentials in the cercal nerve. 3. It is proposed that curare can induce blockage of conduction in sensory, motor and central nervous system fibres. It is further proposed that this blockage of conduction is the mechanism of insect curarization. 4. The results of previous reports concerned with insect curarization are re-interpreted in view of the proposal. Several of the conflicts in these reports are resolved by the proposal that blockage of conduction is the mechanism of insect curarization.


1980 ◽  
Vol 84 (1) ◽  
pp. 119-136
Author(s):  
D. Mellon ◽  
J. E. Treherne ◽  
N. J. Lane ◽  
J. B. Harrison ◽  
C. K. Langley

Intracellular recordings demonstrated a transfer of impulses between the paired giant axons of Sabella, apparently along narrow axonal processes contained within the paired commissures which link the nerve cords in each segment of the body. This transfer appears not to be achieved by chemical transmission, as has been previously supposed. This is indicated by the spread of depolarizing and hyperpolarizing voltage changes between the giant axons, the lack of effects of changes in the concentrations of external divalent cations on impulse transmission and by the effects of hyperpolarization in reducing the amplitude of the depolarizing potential which precedes the action potentials in the follower axon. The ten-to-one attenuation of electronic potentials between the giant axons argues against the possibility of an exclusively passive spread of potential along the axonal processes which link the axons. Observation of impulse traffic within the nerve cord commissures indicates, on the other hand, that transmission is achieved by conduction of action potentials along the axonal processes which link the giant axons. At least four pairs of intact commissures are necessary for inter-axonal transmission, the overall density of current injected at multiple sites on the follower axon being, it is presumed, sufficient to overcome the reduction in safety factor imposed by the geometry of the system in the region where axonal processes join the giant axons. The segmental transmission between the giant axons ensures effective synchronization of impulse traffic initiated in any region of the body and, thus, co-ordination of muscular contraction, during rapid withdrawal responses of the worm.


1979 ◽  
Vol 78 (1) ◽  
pp. 121-136
Author(s):  
GERALD E. SILVEY ◽  
IAN S. WILSON

The syncarid crustacean Anaspides tasmaniae rapidly flexes its free thoracic and abdominal segments in response to tactile stimulation of its body. This response decrements but recovers in slightly more than one hour. The fast flexion is evoked by single action potentials in the lateral of two large diameter fibres (40 μm) which lie on either side of the cord. The lateral giant fibre is made up of fused axons of 11 neurones, one in each of the last 5 thoracic and 6 abdominal ganglia. The soma of each neurone lies contralateral to the axon. Its neurite crosses that of its counterpart in the commissure and gives out dendrites into the neuropile of each hemiganglion. The lateral giant neurone receives input from the whole body but fires in response only to input from the fourth thoracic segment posteriorly. Both fibres respond with tactile stimulation of only one side. Since neither current nor action potentials spread from one fibre to the other, afferents must synapse with both giant neurones. The close morphological and physiological similarities of the lateral giant neurone in Anaspides to that in the crayfish (Eucarida) suggest that the lateral giant system arose in the ancestor common to syncarids and eucarids, prior to the Carboniferous.


1967 ◽  
Vol 46 (3) ◽  
pp. 571-583
Author(s):  
M. B. V. ROBERTS

1. Three thresholds are demonstrated in the first segmental nerve and two (sometimes three) in the second and third segmental nerves together. 2. Slow potentials recorded from the ventral nerve cord consist of several peaks. The first peak is composed of three spikes which make their appearance at different thresholds. Transmission of at least some of the slow potentials is decremental. 3. Transmission speeds in the nerve cord and segmental nerves range from 0.4 to 0.6 m./sec. 4. Action potentials in the longitudinal muscle are recorded in response to slow potentials in the nerve cord. 5. Two slow reflexes, one involving elongation, the other longitudinal contraction, are described. The latter has the lower threshold with peripheral stimulation. 6. Slow activity in the nervous system is discussed in relation to reflex activity of the earthworm and the neurone anatomy of the nerve cord and segmental nerves.


1948 ◽  
Vol s3-89 (5) ◽  
pp. 1-45
Author(s):  
J.A. C. NICOL

1. A description is given of the main features of the central nervous system of Myxicola infundibulum Rénier. 2. The nerve-cord is double in the first four thoracic segments and single posteriorly. It shows segmental swellings but is not ganglionated in the usual sense in that nerve-cell accumulations are not related directly to such swellings of the cord. 3. A very large axon lies within the dorsal portion of the nerve-cord and extends from the supra-oesophageal ganglia to the posterior end of the animal. It is small in the head ganglia where it passes transversely across the mid-line, increases in diameter in the oesophageal connectives, and expands to very large size, up to 1 mm., in the posterior thorax and anterior abdomen, and gradually tapers off to about 100µ in the posterior body. It shows segmental swellings corresponding to those of the nerve-cord in each segment. It occupies about 27 per cent, of the volume of the central nervous system and 0.3 per cent, of the volume of the animal. The diameter of the fibre increases during contraction of the worm. 4. The giant fibre is a continuous structure throughout its length, without internal dividing membranes or septa. Usually a branch of the giant fibre lies in each half of the nerve-cord in the anterior thoracic segments and these several branches are continuous with one another longitudinally and transversely. 5. The giant fibre is connected with nerve-cells along its entire course; it arises from a pair of cells in the supra-oesophageal ganglia, and receives the processes of many nerve-cells in each segment. There is no difference between the nerve-cells of the giant fibre and the other nerve-cells of the cord. 6. A distinct fibrous sheath invests the giant fibre. A slight concentration of lipoid can be revealed in this sheath by the use of Sudan black. 7. About eight peripheral branches arise from the giant fibre in each segment. They have a complex course in the nerve-cord where they anastomose with one another and receive the processes of nerve-cells. Peripherally, they are distributed to the longitudinal musculature. 8. Specimens surviving 16 days following section of the nerve-cord in the thorax have shown that the giant fibre does not degenerate in front of or behind a cut, thus confirming that it is a multicellular structure connected to nerve-cells in the thorax and abdomen. 9. It is concluded that the giant fibre of M. infundibulum is a large syncytial structure, extending throughout the entire central nervous system and the body-wall of the animal. 10. The giant fibre system of M. aesthetica resembles that of M. infundibulum. 11. Some implications of the possession of such a giant axon are discussed. It is suggested that its size, structure, and simplicity lead to rapid conduction and thus effect a considerable saving of reaction time, of considerable value to the species when considered in the light of the quick contraction which it mediates. The adoption of a sedentary mode of existence has permitted this portion of the central nervous system to become developed at the expense of other elements concerned with errant habits.


1966 ◽  
Vol 45 (1) ◽  
pp. 141-150
Author(s):  
M. B. V. ROBERTS

1. Successive rapid responses of the earthworm show a marked tendency to increase in size on repetition. 2. It is shown that this "staircase" phenomenon is not due to peripheral facilitation either on the afferent or efferent side of the reflex, but to summation in the nerve cord and evidence is presented that it occurs at "giant-to-motor" junctions. 3. Facilitation is most pronounced in preparations whose "giant-to-motor" junctions are accommodated. In such cases a single impulse in the median giant fibre is ineffective, two or more being required to produce a rapid response throughout the length of the animal. 4. Fatigue and facilitation in the earthworm is discussed in relation to similar phenomena in other invertebrates.


Sign in / Sign up

Export Citation Format

Share Document