Studies of the enzyme activity of Bact. lactis aerogenes (Aerobacter aerogenes) . II. The effects of various adaptations on the enzyme balance

A study has been made of the changes in enzyme balance accompanying the adaptation of Bact, lactis aerogenes to resist various drugs or to utilize lactose. Enzymes directly responsible for the breakdown of the source of carbon and energy prove, in general, to be expanded in cells resistant to streptomycin or crystal violet. Training to these drugs appears to transfer metabolism to anaerobic routes requiring more of the carbon source and thus needing a greater activity of the degradative enzymes. Training to both drugs jointly, however, leaves these enzyme activities unchanged or actually reduces them. After adaptation to resist proflavine, the oxidative and catabolic processes are less active than before, whereas asparagine deaminase, representing part of the amino-acid metabolism, is expanded, perhaps in compensation. The activities of enzymes normally latent in the cell and capable of degrading carbon sources which the cell has not previously used are usually, but not invariably decreased by drug training. In the development of a new cellular economy these enzymes may apparently have to be partially sacrificed. Training to chloramphenicol does not alter the activities of the enzymes studied. Catalase shows little change during training to most of the drugs. During adaptation to utilize lactose the activity of every enzyme studied changes in a way which suggests a co-ordinated pattern. Those enzymes responsible for the breakdown of lactose are expanded and the activities of the non-induced enzymes all show a complex pattern linked with this. Catalase activity falls but asparagine deaminase activity rises.

1968 ◽  
Vol 46 (2) ◽  
pp. 141-150 ◽  
Author(s):  
R. A. Freedland ◽  
E. H. Avery ◽  
A. R. Taylor

Many enzyme activities which were increased by hydrocortisone were decreased by adrenalectomy. This effect was more apparent with enzymes related to amino acid metabolism than those related to carbohydrate metabolism. The latter, although significantly increased by hydrocortisone, did not show marked decreases after adrenalectomy. Hypophysectomy decreased the activities of many enzyme systems associated with carbohydrate metabolism more drastically than did adrenalectomy. The results with the enzymes related to amino acid metabolism were not as clear. Several of these were decreased to a greater degree after hypophysectomy than after adrenalectomy. In contrast, several enzymes were also increased above the control values after hypophysectomy. Adrenalectomy was particularly efficient in decreasing the activities of several transaminases, and hypophysectomy had a marked effect upon decreasing TPN+-linked enzyme systems.The response of several enzymes to L-thyroxine injections was decreased in magnitude or eliminated after adrenalectomy. This was particularly true for enzymes associated with carbohydrate metabolism. Several enzymes increased by L-thyroxine in intact animals were actually decreased in adrenalectomized rats after this treatment. This was particularly true for serine dehydrase and glutamic–pyruvic transaminase. These results are strongly suggestive of a thyroxine–adrenal interaction in the intact animal. Hypophysectomy had a similar effect on enzyme responses to L-thyroxine, with the exception of glutaminase. Therefore, many of the effects of hypophysectomy may actually be related to a lack of adrenal function. It was observed that the removal of the adrenal had similar effects on responses of enzyme activity after thyroxine treatment, as did pituitary removal. Certain of the enzymes were decreased to a greater extent by hypophysectomy, and others were actually increased in activity after removal of the pituitary. It therefore appears that in many enzyme systems there is a complete requirement for the pituitary and (or) adrenals for a L-thyroxine effect on enzyme activity. In other enzyme systems the dependence appears to occur but does not appear to be complete.


1986 ◽  
Vol 234 (3) ◽  
pp. 635-647 ◽  
Author(s):  
M Salter ◽  
R G Knowles ◽  
C I Pogson

The quantitative importance of the individual steps of aromatic amino acid metabolism in rat liver was determined by calculation of the respective Control Coefficients (Strengths). The Control Coefficient of tryptophan 2,3-dioxygenase for tryptophan degradation was determined in a variety of physiological conditions and with a range of activities of tryptophan 2,3-dioxygenase. The Control Coefficient varied from 0.75 with basal enzyme activity to 0.25 after maximal induction of the enzyme by dexamethasone. The remainder of the control for tryptophan degradation was associated with the transport of the amino acid across the plasma membrane, with only very small contributions from kynureninase and kynurenine hydroxylase. The Control Coefficients of tyrosine aminotransferase for tyrosine degradation were approx. 0.70 and 0.20 with basal and dexamethasone-induced tyrosine aminotransferase activities respectively; the Control Coefficients of the transport of the amino acid into the cell were 0.22 and 0.58 respectively. Phenylalanine hydroxylase was found to have a Control Coefficient for the degradation of phenylalanine of approx. 0.50 under conditions of basal enzyme activity; after maximal activation by glucagon, the Control Coefficient decreased to 0.12. The transport of phenylalanine was responsible for the remaining control in the pathway. These results have important implications, directly for the regulation of aromatic amino acid metabolism in the liver, and indirectly for the regulation of neuroamine synthesis in the brain.


1979 ◽  
Vol 7 (1) ◽  
pp. 261-262
Author(s):  
E. V. ROWSELL

1985 ◽  
Vol 4 ◽  
pp. 141-146 ◽  
Author(s):  
K VESTERBERG ◽  
J BERGSTROM ◽  
P FURST ◽  
U LEANDER ◽  
E VINNARS

Diabetes ◽  
1993 ◽  
Vol 42 (12) ◽  
pp. 1868-1877 ◽  
Author(s):  
L. Luzi ◽  
A. S. Petrides ◽  
R. A. De Fronzo

Sign in / Sign up

Export Citation Format

Share Document