Address of the President Professor A. L. Hodgkin at the Anniversary Meeting, 30 November 1971

Award of Medals 1971 The Copley Medal is awarded to Mr N. W. Pirie, F.R.S. for his outstanding work on the nature of viruses. Pirie discovered the chemical composition of viruses and his work transformed ideas about their morphology and method of multiplication. He was the first to show that nucleic acid is a necessary component of a virus and, at a time when tobacco mosaic virus was thought to be a crystalline globulin, he made liquid crystalline preparations of several strains which he correctly identified as nucleoproteins containing 5 % ribose nucleic acid. He then generalized his discovery by isolating several other viruses, with widely different stabilities and other properties, in crystalline or liquid crystalline forms, and by showing th at all contained nucleic acid, but in amounts and held in ways that differed characteristically in different viruses. His work was the first to show that different viruses differed greatly in shape and that those with anisometric particles could change their length in vitro . X-ray crystallography applied to his preparations provided the first accurate information about the sizes of virus particles and first showed them to be composed of uniform subunits regularly arranged. Pirie also showed that nucleic acids could be much larger than generally thought, and the methods he used to prepare them were among those used by later workers who showed that nucleic acid alone could be infective.

The Copley Medal is awarded to Mr N. W. Pirie , F.R.S. for his outstanding work on the nature of viruses. Pirie discovered the chemical composition of viruses and his work transformed ideas about their morphology and method of multiplication. He was the first to show that nucleic acid is a necessary component of a virus and, at a time when tobacco mosaic virus was thought to be a crystalline globulin, he made liquid crystalline preparations of several strains which he correctly identified as nucleoproteins containing 0.5 % ribose nucleic acid. He then generalized his discovery by isolating several other viruses, with widely different stabilities and other properties, in crystalline or liquid crystalline forms, and by showing that all contained nucleic acid, but in amounts and held in ways that differed characteristically in different viruses.


2021 ◽  
Vol 126 ◽  
pp. 108448
Author(s):  
Guoyuan Du ◽  
Zhonghui Zhang ◽  
Xiangyu Lu ◽  
Wentao Cai ◽  
Liji Wu ◽  
...  

2014 ◽  
Vol 58 (10) ◽  
pp. 6044-6055 ◽  
Author(s):  
Tanira M. Bastos ◽  
Marília I. F. Barbosa ◽  
Monize M. da Silva ◽  
José W. da C. Júnior ◽  
Cássio S. Meira ◽  
...  

ABSTRACTcis-[RuCl(NO2)(dppb)(5,5′-mebipy)] (complex 1),cis-[Ru(NO2)2(dppb)(5,5′-mebipy)] (complex 2),ct-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2(complex 3), andcc-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2(complex 4), where 5,5′-mebipy is 5,5′-dimethyl-2,2′-bipyridine and dppb is 1,4-bis(diphenylphosphino)butane, were synthesized and characterized. The structure of complex 2 was determined by X-ray crystallography. These complexes exhibited a higher anti-Trypanosoma cruziactivity than benznidazole, the current antiparasitic drug. Complex 3 was the most potent, displaying a 50% effective concentration (EC50) of 2.1 ± 0.6 μM against trypomastigotes and a 50% inhibitory concentration (IC50) of 1.3 ± 0.2 μM against amastigotes, while it displayed a 50% cytotoxic concentration (CC50) of 51.4 ± 0.2 μM in macrophages. It was observed that the nitrosyl complex 3, but not its analog lacking the nitrosyl group, releases nitric oxide into parasite cells. This release has a diminished effect on the trypanosomal protease cruzain but induces substantial parasite autophagy, which is followed by a series of irreversible morphological impairments to the parasites and finally results in cell death by necrosis. In infected mice, orally administered complex 3 (five times at a dose of 75 μmol/kg of body weight) reduced blood parasitemia and increased the survival rate of the mice. Combination index analysis of complex 3 indicated that itsin vitroactivity against trypomastigotes is synergic with benznidazole. In addition, drug combination enhanced efficacy in infected mice, suggesting that ruthenium-nitrosyl complexes are potential constituents for drug combinations.


ChemInform ◽  
2011 ◽  
Vol 42 (49) ◽  
pp. no-no
Author(s):  
Lina Lin ◽  
Jia Sheng ◽  
Zhen Huang

Nature ◽  
2010 ◽  
Vol 468 (7324) ◽  
pp. 709-712 ◽  
Author(s):  
James E. Voss ◽  
Marie-Christine Vaney ◽  
Stéphane Duquerroy ◽  
Clemens Vonrhein ◽  
Christine Girard-Blanc ◽  
...  

2018 ◽  
Vol 41 (3-4) ◽  
pp. 129-133 ◽  
Author(s):  
De-Gui Shu ◽  
Wen-Yu Chen

Abstract Here, a new indium (In)-based coordination polymer [In(hip)](DMF)2(H2O)3 (1, DMF=N,N-dimethylformamide) was successfully prepared by a solvothermal reaction of In(NO3)3·6H2O and 5-hydroxyisophthalic acid (H3hip) in a mixed solvent of DMF and H2O with the presence of NaCl as a template. Complex 1 was characterized by elemental analysis (EA), single-crystal X-ray crystallography, and powder X-ray diffraction (PXRD), and the results reveal that complex 1 shows a two-dimensional (2D) grid-like network with considerable solvent accessible volume that was generated from the packing of the 2D layers via the AB pattern. Furthermore, complex 1 could be downsized into nanoscale particles with the aid of polyvinylpyrrolidone (PVP). In addition, the anticancer activities of 1 and the nanoscale 1 were probed via the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay.


2019 ◽  
Vol 47 (12) ◽  
pp. 6059-6072 ◽  
Author(s):  
Ashok Nuthanakanti ◽  
Ishtiyaq Ahmed ◽  
Saddam Y Khatik ◽  
Kayarat Saikrishnan ◽  
Seergazhi G Srivatsan

Abstract Comprehensive understanding of structure and recognition properties of regulatory nucleic acid elements in real time and atomic level is highly important to devise efficient therapeutic strategies. Here, we report the establishment of an innovative biophysical platform using a dual-app nucleoside analog, which serves as a common probe to detect and correlate different GQ structures and ligand binding under equilibrium conditions and in 3D by fluorescence and X-ray crystallography techniques. The probe (SedU) is composed of a microenvironment-sensitive fluorophore and an excellent anomalous X-ray scatterer (Se), which is assembled by attaching a selenophene ring at 5-position of 2′-deoxyuridine. SedU incorporated into the loop region of human telomeric DNA repeat fluorescently distinguished subtle differences in GQ topologies and enabled quantify ligand binding to different topologies. Importantly, anomalous X-ray dispersion signal from Se could be used to determine the structure of GQs. As the probe is minimally perturbing, a direct comparison of fluorescence data and crystal structures provided structural insights on how the probe senses different GQ conformations without affecting the native fold. Taken together, our dual-app probe represents a new class of tool that opens up new experimental strategies to concurrently investigate nucleic acid structure and recognition in real time and 3D.


2010 ◽  
Vol 5 (4) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Mahmoud Mosaddegh ◽  
Maryam Hamzeloo Moghadam ◽  
Saeedeh Ghafari ◽  
Farzaneh Naghibi ◽  
Seyed Nasser Ostad ◽  
...  

Inula oculus-christi L. (Compositae) extract was chromatographed and three sesquiterpene lactones ergolide, gaillardin and pulchellin C were isolated. The structures of these compounds were determined by analysis of their spectroscopic data, and their crystal structures were defined using X-ray crystallography; the isolation of ergolide and pulchellin C is reported for the first time from this species. These three compounds were evaluated for their in vitro cytotoxic activity against MDBK, MCF7 and WEHI164 cells; ergolide and gaillardin exhibited lower and significantly different IC50 values compared with pulchellin C ( p<0.001).


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3082 ◽  
Author(s):  
Bogdan Istrate ◽  
Corneliu Munteanu ◽  
Stefan Lupescu ◽  
Romeu Chelariu ◽  
Maria Daniela Vlad ◽  
...  

In recent years, biodegradable Mg-based materials have been increasingly studied to be used in the medical industry and beyond. A way to improve biodegradability rate in sync with the healing process of the natural human bone is to alloy Mg with other biocompatible elements. The aim of this research was to improve biodegradability rate and biocompatibility of Mg-0.5Ca alloy through addition of Y in 0.5/1.0/1.5/2.0/3.0wt.%. To characterize the chemical composition and microstructure of experimental Mg alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), light microscopy (LM), and X-ray diffraction (XRD) were used. The linear polarization resistance (LPR) method was used to calculate corrosion rate as a measure of biodegradability rate. The cytocompatibility was evaluated by MTT assay (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) and fluorescence microscopy. Depending on chemical composition, the dendritic α-Mg solid solution, as well as lamellar Mg2Ca and Mg24Y5 intermetallic compounds were found. The lower biodegradability rates were found for Mg-0.5Ca-2.0Y and Mg-0.5Ca-3.0Y which have correlated with values of cell viability. The addition of 2–3 wt.%Y in the Mg-0.5Ca alloy improved both the biodegradability rate and cytocompatibility behavior.


Sign in / Sign up

Export Citation Format

Share Document