Intracellular recording from visually identified motoneurons in rat spinal cord slices

1978 ◽  
Vol 202 (1148) ◽  
pp. 417-421 ◽  

Motoneurons were directly visualized with Nomarski optics in slices prepared from new born rat spinal cord. Intracellular recordings from these neurons showed spontaneous potentials, probably triggered by inter-neuronal activity. Action potentials could also be evoked by direct intracellular stimulation of the motoneurons. Iontophoretically applied L-glutamate caused a fast depolarization of the motoneuronal membrane. Considerable differences in local sensitivity to L-glutamate were found on the surface of the motoneuron.


1982 ◽  
Vol 47 (5) ◽  
pp. 885-908 ◽  
Author(s):  
R. Gillette ◽  
M. P. Kovac ◽  
W. J. Davis

1. A population of interneurons that control feeding behavior in the mollusk Pleurobranchaea has been analyzed by dye injection and intracellular stimulation/recording in whole animals and reduced preparations. The population consists of 12-16 somata distributed in two bilaterally symmetrical groups on the anterior edge of the cerebropleural ganglion (brain). On the basis of their position adjacent to the cerebral lobes, these cells have been named paracerebral neurons (PCNs). This study concerns pme subset pf [MCs. the large, phasic ones, which have the strongest effect on the feeding rhythm (21). 2. Each PCN sends a descending axon via the ipsilateral cerebrobuccal connective to the buccal ganglion. Axon branches have not been detected in other brain or buccal nerves and hence the PCNs appear to be interneurons. 3. In whole-animal preparations, tonic intracellular depolarization of the PNCs causes them to discharge cyclic bursts of action potentials interrupted by a characteristic hyperpolarization. In all specimens that exhibit feeding behavior, the interburst hyperpolarization is invariably accompanied by radula closure and the beginning of proboscis retraction (the "bite"). No other behavorial effect of PCN stimulation has been observed. 4. In whole-animal preparations, the PCNs are excited by food and tactile stimulation of the oral veil, rhinophores, and tentacles. When such stimuli induce feeding the PCNs discharge in the same bursting pattern seen during tonic PCN depolarization, with the cyclic interburst hyperpolarization phase locked to the bit. When specimens egest an unpalatable object by cyclic buccal movements, however, the PCNs are silent. The PCNs therefore exhibit properties expected of behaviorally specific "command" neurons for feeding. 5. Silencing one or two PCNs by hyperpolarization may weaken but does not prevent feeding induced by natural food stimuli. Single PCNs therefore can be sufficient but are not necessary to induction of feeding behavior. Instead the PCNs presumably operate as a population to control feeding. 6. In isolated nervous system preparations tonic extracellular stimulation of the stomatogastric nerve of the buccal ganglion elicits a cyclic motor rhythm that is similar in general features to the PNC-induced motor rhythm. Bursts of PCN action potentials intercalated at the normal phase position in this cycle intensify the buccal rhythm. Bursts of PCN impulses intercalated at abnormal phase positions reset the buccal rhythm. The PCNs, therefore, also exhibit properties expected of pattern-generator elements and/or coordinating neurons for the buccal rhythm. 7. The PCNs are recruited into activity when the buccal motor rhythm is elicited by stomatogastric nerve stimulation or stimulation of the reidentifiable ventral white cell. The functional synergy between the PCNs and the buccal rhythm is therefore reciprocal. 8...





1987 ◽  
Vol 58 (3) ◽  
pp. 460-479 ◽  
Author(s):  
C. J. Woolf ◽  
A. E. King

Intracellular recording techniques have been used to study neurons that respond to low- and to high-intensity mechanical stimulation of the skin of the hindpaw (wide dynamic range or multireceptive cells) in the deep dorsal horn of the fourth lumbar segment of the spinal cord, in decerebrate-spinal rats. Electrical stimulation of the A-fibers in the sciatic nerve produced a short-latency response in all 32 neurons studied. A long-latency prolonged excitation was produced in 28 of the 32 neurons when the unmyelinated afferents in the sciatic nerve were activated. This paper describes the physiological properties of 12 multireceptive cells with A- and C-fiber inputs, whose cell body location was established by horseradish peroxidase ionophoresis and the morphology of six neurons in this group whose cell bodies lay within lamina V. Single stimuli to the sciatic nerve at an intensity high enough to activate unmyelinated afferent fibers (C-fiber strength) produced two patterns of response in the neurons. In five neurons a number of long-latency postsynaptic potentials (PSPs) clearly separated from the short-latency A-fiber evoked PSPs were produced, resulting in an early discharge, a silent period, and a late discharge. The second pattern, found in seven neurons, was a long-lasting depolarization, only generated by C-strength stimuli, which continued from the early A-fiber evoked PSPs, peaked at 100-200 ms, and lasted for 300-500 ms, producing in six cases a continuous burst of action potentials with a maximal frequency at the expected latency of the C-afferent fiber input but with no clear A- and C-fiber evoked banding of the action potentials. This postsynaptic depolarization was large enough to inactivate action potentials in one cell. Repeated stimuli to the sciatic nerve (1 Hz for 10 s) at C-fiber strength produced five different types of response in the neurons. In three neurons a progressive increase in the size and duration of the C-fiber PSPs occurred, resulting in an increase in the number of action potentials (windup), whereas in two, the repeated stimulation resulted in a progressive moderate depolarization of the neurons and an increase in the total number of action potentials evoked at both early and late latencies. Large depolarizations, sufficient to partially inactivate action potentials, developed during the repeated stimulation in two cells, effectively reducing the number of spikes evoked per stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)



2005 ◽  
Vol 1034 (1-2) ◽  
pp. 62-70 ◽  
Author(s):  
Kyoji Taguchi ◽  
Masatoshi Shiina ◽  
Keiko Shibata ◽  
Iku Utsunomiya ◽  
Tadashi Miyatake




Sign in / Sign up

Export Citation Format

Share Document