Set-related neuronal activity in the premotor cortex of rhesus monkeys: effects of changes in motor set

Previous studies have suggested that the premotor cortex plays a role in motor preparation. We have tested this hypothesis in macaque monkeys by examining neuronal activity during an enforced, 1.5—3.0 s delay period between the presentation of an instruction for movement and the onset of that movement. Two targets for movement were available to the monkey, one on the left and one on the right. Illumination of one of the targets served as the instruction for a forelimb movement. It is known that there are cells in the premotor cortex that have directionally specific, sustained activity increases or decreases following such instructions. If the premotor cortex is involved in the preparation for movement in a particular direction, then changing the target from one to the opposite side during the delay period should lead to a pronounced change in sustained neuronal activity. Further, removing the instruction, while still requiring movement to the target, should have little or no sustained effect. Seventy cells showed the predicted activity patterns, thus sup­porting the view that the premotor cortex plays a role in motor preparation.

1995 ◽  
Vol 73 (2) ◽  
pp. 886-890 ◽  
Author(s):  
D. Boussaoud

1. This study investigated whether the neuronal activity of a cortical area devoted to the control of limb movements is affected by variations in eye position within the orbit. Two rhesus monkeys were trained to perform a conditional visuomotor task with an instructed delay period while maintaining gaze on a fixation point. 2. The experimental design required each monkey to put its hand on a metal touch pad located at arm's length and fixate a small spot of light presented on a computer screen. Then a visual cue came on, at the fixation point or elsewhere, the color of which instructed the monkey to move its limb to one of two touch pads according to a conditional rule. A red cue meant a movement to the left, whereas a green one instructed a movement to the right. The cue lasted for a variable delay period (1-3 s), and the monkey had to wait for its offset, the go signal, before performing the correct response. The fixation point and the cues were presented at various screen locations in a combination that allowed examination of whether eye position and/or target position modulate the neuronal activity. Because the monkeys' heads were fixed, all changes in eye position reflected movements in a craniocentric, head-centered, coordinate space. 3. The activity of single neurons was recorded from dorsal premotor cortex (PMd). For most neurons (79%), the activity during the instructed delay period (set-related activity) reflects the direction of the upcoming limb movement but varies significantly with eye position.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 69 (1) ◽  
pp. 187-200 ◽  
Author(s):  
K. Kurata

1. Neuronal activity was recorded from the premotor cortex (PM) of Japanese monkeys while they performed hand movements with different amplitudes and directions. On each behavioral trial, two instructions were given sequentially: 1) an amplitude instruction (large or small) and 2) a direction instruction (flexion or extension). The onset of movement was triggered by a visual signal after a delay period. 2. Among various kinds of task-related neuronal activity recorded in the PM, two types were selected for study: 1) set-related activity, sustained activity change during the delay period that followed presentation of instruction signals (IS); and 2) movement-related activity, activity change immediately before and during movement, which followed the trigger signal (TS) presentation. 3. Thirty-two of 101 set-related neurons showed activity change after presentation of the first IS (Delay 1 set-related activity), when they were instructed in either amplitude or direction, but not both. All of the set-related neurons showed activity modulation after presentation of the second IS (Delay 2 set-related activity). When neurons showed both Delay 1 and Delay 2 set-related activity, they were usually more active during Delay 2, i.e., when the monkeys had received both amplitude and directional ISs. A majority of neurons with Delay 2 set-related activity (64%) showed relation to both movement amplitude and direction. Twenty-eight percent of the neurons showed relation to either amplitude or direction, but not both. These findings seem consistent with a view that serial, rather than parallel, processes of motor programming operate in preparation of intended movements. 4. A majority of PM neurons with movement-related activity (51%) showed activity change related to both the direction and amplitude of movement. Forty-two percent showed selective relation to either direction or amplitude. These findings support a view that PM contributes to the control of limb movements. 5. Histological reconstruction showed that a vast majority of PM set-related neurons were located in the dorsal aspect of the PM (PMd), medial to the arcuate spur and lateral to the superior precentral sulcus. In contrast, movement-related neurons were distributed in two distinct foci: one in the ventral aspect of the PM (PMv), immediately caudal to the genu of the arcuate sulcus and lateral to the spur of the sulcus; and the other in the PMd, overlap;ing the location of set-related neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 71 (3) ◽  
pp. 1281-1284 ◽  
Author(s):  
D. J. Crammond ◽  
J. F. Kalaska

1. Neuronal activity was recorded in the dorsal premotor cortex (PMd) of two monkeys performing a multidirectional, instructed-delay (ID) reaching task in which visuospatial cues signaled the direction of movement either congruent with the instruction cue ("direct-delay" trials, DD) or redirected 180 degrees opposite to the cue ("redirected-delay" trials, RD). Therefore, this task had two degrees of stimulus-response (S-R) compatibility because in one-half of the trials the spatial attributes of the visual cue were incongruent with those of the intended movement. 2. The majority of PMd cells discharged both at short latency to the RD or DD cues and subsequently with sustained activity during the remaining ID period (IDP). The earliest responses (< 250 ms) in both DD and RD trials covaried with cue location and so could be either a "visuospatial" response or a neuronal correlate of the selection of action with highest S-R compatibility, namely move to the stimulus. In contrast, later IDP activity usually covaried with the direction of movement signaled by the cues, independent of their spatial location, supporting the hypothesis that IDP discharge in PMd ultimately encodes attributes of intended reaching movements.


2002 ◽  
Vol 87 (2) ◽  
pp. 1123-1128 ◽  
Author(s):  
Eiji Hoshi ◽  
Jun Tanji

We compared neuronal activity in the dorsal and ventral premotor areas (PMd and PMv, respectively) when monkeys were preparing to perform arm-reaching movements in a motor-set period before their actual execution. They were required to select one of four possible movements (reaching to a target on the left or right, using either the left or right arm) in accordance with two sets of instruction cues, followed by a delay period, and a subsequent motor-set period. During the motor-set period, the monkeys were required to get ready for a movement-trigger signal to start the arm-reach promptly. We analyzed the activity of 211 PMd and 109 PMv neurons that showed selectivity for the combination of the two instruction cues during the motor-set period. A majority (53%) of PMd neurons exhibited activity significantly tuned to both target location and arm use, and an approximately equal number of PMd neurons showed selectivity to either forthcoming arm use or target location. In contrast, 60% of PMv neurons showed selectivity for target location only and not for arm use. These findings point to preference in the use of neuronal activity in the two areas: preparation for action in the PMd and preparation for target acquisition in the PMv.


2017 ◽  
Author(s):  
Kelsey M. Tyssowski ◽  
Ramendra N. Saha ◽  
Nicholas R. DeStefino ◽  
Jin-Hyung Cho ◽  
Richard D. Jones ◽  
...  

SUMMARYBrief and sustained neuronal activity patterns can have opposite effects on synaptic strength that both require activity-regulated gene (ARG) expression. However, whether distinct patterns of activity induce different sets of ARGs is unknown. In genome-scale experiments, we reveal that a neuron’s activity-pattern history can be predicted from the ARGs it expresses. Surprisingly, brief activity selectively induces a small subset of the ARG program that that corresponds precisely to the first of three temporal waves of genes induced by sustained activity. These first-wave genes are distinguished by an open chromatin state, proximity to rapidly activated enhancers, and a requirement for MAPK/ERK signaling for their induction. MAPK/ERK mediates rapid RNA polymerase recruitment to promoters, as well as enhancer RNA induction but not histone acetylation at enhancers. Thus, the same mechanisms that establish the multi-wave temporal structure of ARG induction also enable different sets of genes to be induced by distinct activity patterns.


1991 ◽  
Vol 66 (3) ◽  
pp. 705-718 ◽  
Author(s):  
H. Mushiake ◽  
M. Inase ◽  
J. Tanji

1. Single-cell activity was recorded from three different motor areas in the cerebral cortex: the primary motor cortex (MI), supplementary motor area (SMA), and premotor cortex (PM). 2. Three monkeys (Macaca fuscata) were trained to perform a sequential motor task in two different conditions. In one condition (visually triggered task, VT), they reached to and touched three pads placed in a front panel by following lights illuminated individually from behind the pads. In the other condition (internally guided task, IT), they had to remember a predetermined sequence and press the three pads without visual guidance. In a transitional phase between the two conditions, the animals learned to memorize the correct sequence. Auditory instruction signals (tones of different frequencies) told the animal which mode it was in. After the instruction signals, the animals waited for a visual signal that triggered the first movement. 3. Neuronal activity was analyzed during three defined periods: delay period, premovement period, and movement period. Statistical comparisons were made to detect differences between the two behavioral modes with respect to the activity in each period. 4. Most, if not all, of MI neurons exhibited similar activity during the delay, premovement, and movement periods, regardless of whether the sequential motor task was visually guided or internally determined. 5. More than one-half of the SMA neurons were preferentially or exclusively active in relation to IT during both the premovement (55%) and movement (65%) periods. In contrast, PM neurons were more active (55% and 64% during the premovement and movement periods) in VT. 6. During the instructed-delay period, a majority of SMA neurons exhibited preferential or exclusive relation to IT whereas the activity in PM neurons was observed equally in different modes. 7. Two types of neurons exhibiting properties of special interest were observed. Sequence-specific neurons (active in a particular sequence only) were more common in SMA, whereas transition-specific neurons (active only at the transitional phase) were more common in PM. 8. Although a strict functional dichotomy is not acceptable, these observations support a hypothesis that the SMA is more related to IT, whereas PM is more involved in VT. 9. Some indications pointing to a functional subdivision of PM are obtained.


1996 ◽  
Vol 75 (5) ◽  
pp. 2180-2186 ◽  
Author(s):  
A. Murata ◽  
V. Gallese ◽  
M. Kaseda ◽  
H. Sakata

1. We recorded activity of the hand-manipulation-task-related neurons in the posterolateral bank of the anterior intraparietal sulcus (area AIP) of the monkey parietal cortex during a delayed hand manipulation task. 2. We examined mainly the object-type visual-dominant and visual-and-motor neurons that responded to the sight of objects for manipulation. The majority of these neurons (32 of 48) showed sustained activity during the delay period in the dark before manipulation of preferred objects. 3. Six visual-and-motor neurons showed set-related activity before the hand manipulation in the dark, so that their delay period activity was likely to be related to motor preparation. 4. The delay period activity of 18 visual-dominant and visual-and-motor neurons without set-related activity was likely to represent spatial features of objects, because the majority of the neurons showed the same selectivity in the shape and/or orientation during object fixation and the delay period. 5. Of these 18 neurons, 10 showed sustained activity in the dark after brief illumination of objects during a light-interrupted fixation task, suggesting that they store the short-term memory of objects without the intention to remember. 6. The results suggest that the visual memory of three-dimensional features of objects is likely to be incorporated in area AIP and to be used for the guidance of hand manipulation.


2003 ◽  
Vol 90 (3) ◽  
pp. 1766-1789 ◽  
Author(s):  
Matthew R. Roesch ◽  
Carl R. Olson

In several regions of the macaque brain, neurons fire during delayed response tasks at a rate determined by the value of the reward expected at the end of the trial. The activity of these neurons might be related either to the internal representation of the appetitive value of the expected reward or to motivation-dependent variations in the monkey's level of motor preparation or motor output. According to the first interpretation, reward-related activity should be most prominent in areas affiliated with the limbic system. According to the second interpretation, it should be most prominent in areas affiliated with the motor system. To distinguish between these alternatives, we carried out single-neuron recording while monkeys performed a memory-guided saccade task in which a visual cue presented early in each trial indicated whether the reward would be large or small. Neuronal activity accompanying task performance was monitored in the dorsolateral prefrontal cortex (PFC), the frontal eye field (FEF), a transitional zone caudal to the frontal eye field (FEF/PM), premotor cortex (PM), the supplementary eye field (SEF), and the rostral part of the supplementary motor area (SMAr). The tendency for neuronal activity to increase after cues that predicted a large reward became progressively stronger in progressively more posterior areas both in the lateral sector of the frontal lobe (PFC < FEF < FEF/PM < PM) and in the medial sector (SEF < SMAr). The very strong reward-related activity of premotor neurons was presumably attributable to the monkey's motivation-dependent level of motor preparation or motor output. This finding points to the need to determine whether reward-related activity in other nonlimbic brain areas, including dorsolateral prefrontal cortex and the dorsal striatum, genuinely represents the value of the expected reward or, alternatively, is related to motivational modulation of motor signals.


2002 ◽  
Vol 88 (4) ◽  
pp. 2167-2171 ◽  
Author(s):  
Tetsuji Ochiai ◽  
Hajime Mushiake ◽  
Jun Tanji

This study examined whether neuronal activity in the dorsal premotor cortex (PMd) covaries with image motion or actual movement of the arm while planning a target-capturing task when the motor task is guided by an image of the moving arm. For this purpose, we trained a monkey to capture a target on a video screen with the part of the arm displayed on the screen. The target-capturing body part was either the right or left side of the hand image. Because the actual arm movement was invisible, the motor task was guided by the arm image, which was at times right-left inverted on the screen. We found that neuronal activity in the PMd predominantly reflected arm-image movement rather than the actual arm movement, and for half of PMd neurons, the activity differed depending on the target-capturing body-part defined in the right or left side of the arm image.


Sign in / Sign up

Export Citation Format

Share Document