Natural selection on multivariate traits in age-structured populations

1993 ◽  
Vol 251 (1330) ◽  
pp. 47-52 ◽  
Genetics ◽  
1975 ◽  
Vol 79 (3) ◽  
pp. 535-544
Author(s):  
Lloyd Demetrius

ABSTRACT This paper studies the properties of a new class of demographic parameters for age-structured populations and analyzes the effect of natural selection on these parameters. Two new demographic variables are introduced: the entropy of a population and the reproductive potential. The entropy of a population measures the variability of the contribution of the different age classes to the stationary population. The reproductive potential measures the mean of the contribution of the different age classes to the Malthusian parameter. The Malthusian parameter is precisely the difference between the entropy and the reproductive potential. The effect of these demographic variables on changes in gene frequency is discussed. The concept of entropy of a genotype is introduced and it is shown that in a random mating population in Hardy-Weinberg equilibrium and under slow selection, the rate of change of entropy is equal to the genetic variance in entropy minus the covariance in entropy and reproductive potential. This result is an information theoretic analog of Fisher's fundamental theorem of natural selection.


2010 ◽  
Vol 78 (4) ◽  
pp. 239-249 ◽  
Author(s):  
Lee Worden ◽  
Louis W. Botsford ◽  
Alan Hastings ◽  
Matthew D. Holland

2001 ◽  
Vol 77 (2) ◽  
pp. 153-166 ◽  
Author(s):  
BRIAN CHARLESWORTH

Formulae for the effective population sizes of autosomal, X-linked, Y-linked and maternally transmitted loci in age-structured populations are developed. The approximations used here predict both asymptotic rates of increase in probabilities of identity, and equilibrium levels of neutral nucleotide site diversity under the infinite-sites model. The applications of the results to the interpretation of data on DNA sequence variation in Drosophila, plant, and human populations are discussed. It is concluded that sex differences in demographic parameters such as adult mortality rates generally have small effects on the relative effective population sizes of loci with different modes of inheritance, whereas differences between the sexes in variance in reproductive success can have major effects, either increasing or reducing the effective population size for X-linked loci relative to autosomal or Y-linked loci. These effects need to be accounted for when trying to understand data on patterns of sequence variation for genes with different transmission modes.


1995 ◽  
Vol 83 (3) ◽  
pp. 548
Author(s):  
Tom J. de Jong ◽  
B. Charlesworth

2010 ◽  
Vol 42 (2) ◽  
pp. 103 ◽  
Author(s):  
Zulfaidah Penata Gama ◽  
Pablo Morlacchi ◽  
Giuseppe Carlo Lozzia ◽  
Johann Baumgärtner ◽  
Anna Giorgi

The spatial distribution of Aphis spiraecola Patch was studied in two commercial yarrow fields located in the Swiss and Italian Alps and represented by Taylor’s (1961) power law. The respective parameters indicate a highly aggregated distribution and lead to a high optimum sample size of 400-500 plants in the design of a sampling program. Opportunities for reducing the sampling efforts are discussed. The infestation patterns were studied on the basis of Vansickle’s (1977) time varying distributed delay adequate for modelling the dynamics of age-structured populations. Published literature data were used to parametrize the functions representing the temperature-dependent duration and survival of the nymphal and adult stage. Likewise, literature data were available to obtain reliable estimates for the parameters of the fecundity function comprising the reproductive profile and the number of nymphs produced at different temperatures. The field data were used to parametrize the functions for wing formation and a compound mortality compromising the effects of plant senescence, stem cutting and natural enemies. The model satisfactorily represented the observed infestation patterns. However, there are opportunities for improving parameter estimation and validation. Moreover, the separation of the compound mortality into host plant and natural enemy effects would improve the mechanistic basis of the model and lead towards a tool that could be used to study bottom-up and top-down effects in the yarrow-aphid-natural enemy system.


Author(s):  
Louis W. Botsford ◽  
J. Wilson White ◽  
Alan Hastings

This chapter begins by revisiting the M’Kendrick/von Foerster model, but using size instead of age as the state variable. It then uses the lessons from that model to describe how individual growth and mortality rates determine both stand distributions (a population of mixed ages) and cohort distributions (all one age). In particular, incorporating variability in growth trajectories is shown to be important in obtaining realistic results—though it is not without pitfalls. Ultimately, the numerical calculations required to model size-structured populations for future projections are more challenging than those needed for age structure, so the chapter closes by discussing some mathematical tools that have been developed to accomplish this. These include the integral projection model, a recent approach that is very useful because, while more complex, it has a lot in common with the age-structured models examined in Chapters 3 and 4.


Sign in / Sign up

Export Citation Format

Share Document