scholarly journals The diverse origins of New Zealand house mice

2008 ◽  
Vol 276 (1655) ◽  
pp. 209-217 ◽  
Author(s):  
Jeremy B Searle ◽  
Paul M Jamieson ◽  
İslam Gündüz ◽  
Mark I Stevens ◽  
Eleanor P Jones ◽  
...  

Molecular markers and morphological characters can help infer the colonization history of organisms. A combination of mitochondrial (mt) d -loop DNA sequences, nuclear DNA data, external measurements and skull characteristics shows that house mice ( Mus musculus ) in New Zealand and its outlying islands are descended from very diverse sources. The predominant genome is Mus musculus domesticus (from western Europe), but Mus musculus musculus (from central Europe) and Mus musculus castaneus (from southern Asia) are also represented genetically. These subspecies have hybridized to produce combinations of musculus and domesticus nuclear DNA coupled with domesticus mtDNA, and castaneus or musculus mtDNA with domesticus nuclear DNA. The majority of the mice with domesticus mtDNA that we sampled had d -loop sequences identical to two haplotypes common in Britain. This is consistent with long-term British–New Zealand cultural linkages. The origins of the castaneus mtDNA sequences widespread in New Zealand are less easy to identify.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Megan Phifer-Rixey ◽  
Bettina Harr ◽  
Jody Hey

Abstract Background The three main subspecies of house mice, Mus musculus castaneus, Mus musculus domesticus, and Mus musculus musculus, are estimated to have diverged ~ 350-500KYA. Resolution of the details of their evolutionary history is complicated by their relatively recent divergence, ongoing gene flow among the subspecies, and complex demographic histories. Previous studies have been limited to some extent by the number of loci surveyed and/or by the scope of the method used. Here, we apply a method (IMa3) that provides an estimate of a population phylogeny while allowing for complex histories of gene exchange. Results Results strongly support a topology with M. m. domesticus as sister to M. m. castaneus and M. m. musculus. In addition, we find evidence of gene flow between all pairs of subspecies, but that gene flow is most restricted from M. m. musculus into M. m. domesticus. Estimates of other key parameters are dependent on assumptions regarding generation time and mutation rate in house mice. Nevertheless, our results support previous findings that the effective population size, Ne, of M. m. castaneus is larger than that of the other two subspecies, that the three subspecies began diverging ~ 130 - 420KYA, and that the time between divergence events was short. Conclusions Joint demographic and phylogenetic analyses of genomic data provide a clearer picture of the history of divergence in house mice.


Virology ◽  
2018 ◽  
Vol 521 ◽  
pp. 92-98 ◽  
Author(s):  
Dagmar Čížková ◽  
Stuart J.E. Baird ◽  
Jana Těšíková ◽  
Sebastian Voigt ◽  
Ďureje Ľudovít ◽  
...  

2012 ◽  
Vol 58 (6) ◽  
pp. 837-850 ◽  
Author(s):  
Lanping Zheng ◽  
Junxing Yang ◽  
Xiaoyong Chen

Abstract The Labeoninae is a subfamily of the family Cyprinidae, Order Cypriniformes. Oromandibular morphology within the Labeoninae is the greatest among cyprinid fishes. Although several phylogenetic studies about labeonines have been undertaken the results have been inconsistent and a comprehensive phylogeny is needed. Further, an incongruence between morphological and molecular phylogeny requires a systematic exploration of the significance of morphological characters on the basis of the molecular phylogeny. In this study, a total of 292 nucleotide sequences from 73 individuals (representing 24 genera and 73 species) of Labeoninae were analyzed. The results of the phylogenetic analysis indicate that there are four major clades within Labeoninae and three monophyletic lineages within the fourth clade. Results of the character evolution show that all oroman-dibular morphological characters are homoplastically distributed on the molecular phylogenetic tree and suggests that these characters evolved several times during the history of labeonines. In particular, the labeonine , a specific disc on the lower lip, has been acquired three times and reversed twice. These morphological characters do not have systematic significance but can be useful for taxonomy. The results of biogeography suggest that the Labeoninae originated from Southeast Asia and separately dispersed to Africa, East Asia and South Asia.


2021 ◽  
Author(s):  
Andrew James Veale ◽  
Carolyn King ◽  
Wayne Johnson ◽  
Lara Shepherd

Abstract The present genetic diversity of commensal rodent populations is often used to inform the invasion histories of these species, and as a proxy for historical events relating to the movement of people and goods. These studies assume that modern genetic diversity generally reflects early colonising events. We investigate this idea by sequencing the mitochondrial DNA of rodent bones found in a 19th-century archaeological site in The Rocks area of Sydney, Australia, the location of the first historical European port. We identified 19th-century bones from two species, Rattus norvegicus and Mus musculus domesticus. We found six genetic haplotypes in the 39 Norway rats, showing either multiple early introductions or a diverse initial founding population. One of them was identical with Norhap01 common in the North Island of New Zealand, but none was like the haplotype Norhap02 found throughout the South Island. We found three haplotypes in seven house mice, all belonging to the dominant subspecies established in Australia, M.m. domesticus. There was no evidence for M. m. castaneus or M. m. musculus having established there. We had few modern R. norvegicus and M. musculus DNA sequences from Sydney, but those we had did tentatively support the hypotheses that (1) modern samples can represent at least a preliminary estimate of historical diversities and origins, and (2) Asian haplotypes of both Norway rats and of house mice reached the South Island of New Zealand early in colonial times direct from China rather than through Port Jackson.


2014 ◽  
Vol 23 (17) ◽  
pp. 4387-4405 ◽  
Author(s):  
Meidong Jing ◽  
Hon-Tsen Yu ◽  
Xiaoxin Bi ◽  
Yung-Chih Lai ◽  
Wei Jiang ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Masahiko Muraji ◽  
Norio Arakaki ◽  
Shigeo Tanizaki

The phylogenetic relationship, biogeography, and evolutionary history of closely related two firefly species,Curtos costipennisandC. okinawanus, distributed in the Ryukyu Islands of Japan were examined based on nucleotide sequences of mitochondrial (2.2 kb long) and nuclear (1.1-1.2 kb long) DNAs. In these analyses, individuals were divided among three genetically distinct local groups,C. costipennisin the Amami region,C. okinawanusin the Okinawa region, andC. costipennisin the Sakishima region. Their mtDNA sequences suggested that ancestralC. costipennispopulation was first separated between the Central and Southern Ryukyu areas, and the northern half was then subdivided betweenC. costipennisin the Amami andC. okinawanusin the Okinawa. The application of the molecular evolutionary clocks of coleopteran insects indicated that their vicariance occurred 1.0–1.4 million years ago, suggesting the influence of submergence and subdivision of a paleopeninsula extending between the Ryukyu Islands and continental China through Taiwan in the early Pleistocene.


Sign in / Sign up

Export Citation Format

Share Document