scholarly journals Separable temporal metrics for time perception and anticipatory actions

2011 ◽  
Vol 279 (1730) ◽  
pp. 854-859 ◽  
Author(s):  
Welber Marinovic ◽  
Derek H. Arnold

Reliable estimates of time are essential for initiating interceptive actions at the right moment. However, our sense of time is surprisingly fallible. For instance, time perception can be distorted by prolonged exposure (adaptation) to movement. Here, we make use of this to determine if time perception and anticipatory actions rely on the same or on different temporal metrics. Consistent with previous reports, we find that the apparent duration of movement is mitigated by adaptation to more rapid motion, but is unchanged by adaptation to slower movement. By contrast, we find symmetrical effects of motion-adaptation on the timing of anticipatory interceptive actions, which are paralleled by changes in perceived speed for the adapted direction of motion. Our data thus reveal that anticipatory actions and perceived duration rely on different temporal metrics.

2020 ◽  
Author(s):  
wouter kruijne ◽  
Hedderik van Rijn

[This paper has not been peer reviewed. Please do not copy or cite without author's permission.] Time perception is malleable, and the perceived duration of stimuli can be strongly affected by the sensory response they evoke. Such ‘temporal illusions’ provide a window on how different sensory systems contribute to our sense of time. Evidence suggests that the sensory response to different features affects time perception to different extents, mediated by the level of arousal or surprise that they evoke. This, however, makes it difficult to disentangle effects of the sensory response itself from the derived arousal or surprise effects. Here, we demonstrate that time perception is differentially affected by different stimulus features when arousal and surprise are kept constant. In four temporal discrimination experiments, participants judged the duration of an interval marked by two briefly presented visual markers. Markers either repeated or changed along one of six feature dimensions, in a manner fully predictable to participants. Repetitions and changes would modulate sensory response magnitudes due to neural repetition suppression. Results showed that intervals were perceived as longer when markers changed in location, size or numerosity. Conversely, changes in face identity, orientation or luminance did not affect time perception. These results point to neural and functional selectivity in the way different stimulus features affect time perception.


1981 ◽  
Vol 52 (3) ◽  
pp. 803-817 ◽  
Author(s):  
Kathleen H. Kowal

Time estimates of 12 intervals of 15 to 65 sec. duration were obtained from 30 subjects by one of two methods, magnitude estimation and cross-modal matching. Three kinds of sequences of musical notes were presented during stimulus intervals: repetitive, melodic, and random. Within all sequences, notes were of equal duration and with equal pauses between them. In all cases, the relationship between perceived and physical time is consistent with Stevens' power law. Exponents derived from both kinds of estimates were significantly affected by the content of the interval. Exponents derived for repetitive sequences were not different from 1 and were significantly larger than exponents derived from random or melodic sequences. These results are inconsistent with the view that the predictability, familiarity, or codability of events occurring in the stimulus interval is inversely related to the perceived duration of that interval. There is some indication that the effect of the content of the interval on judgments of duration varies with the magnitude of the duration being judged. Perhaps the relationship holds only within certain parameters and, when these are exceeded, other factors mask the effect. A two-process theory of time perception, one which considers these other factors and explains the present results, is proposed.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Marta Suárez-Pinilla ◽  
Kyriacos Nikiforou ◽  
Zafeirios Fountas ◽  
Anil K. Seth ◽  
Warrick Roseboom

The neural basis of time perception remains unknown. A prominent account is the pacemaker-accumulator model, wherein regular ticks of some physiological or neural pacemaker are read out as time. Putative candidates for the pacemaker have been suggested in physiological processes (heartbeat), or dopaminergic mid-brain neurons, whose activity has been associated with spontaneous blinking. However, such proposals have difficulty accounting for observations that time perception varies systematically with perceptual content. We examined physiological influences on human duration estimates for naturalistic videos between 1–64 seconds using cardiac and eye recordings. Duration estimates were biased by the amount of change in scene content. Contrary to previous claims, heart rate, and blinking were not related to duration estimates. Our results support a recent proposal that tracking change in perceptual classification networks provides a basis for human time perception, and suggest that previous assertions of the importance of physiological factors should be tempered.


SAGE Open ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 215824402093990
Author(s):  
Lingjing Li ◽  
Yu Tian

In the domain of aesthetic preference, previous studies focused primarily on exploring the factors that influence aesthetic preference while neglecting to investigate whether aesthetic preference affects other psychological activities. This study sought to expand our understanding of time perception by examining whether aesthetic preference in viewing paintings influenced its perceived duration. Participants who preferred Chinese paintings ( n = 20) and participants who preferred western paintings ( n = 21) were recruited to complete a temporal reproduction task that measured their time perception of Chinese paintings and of western paintings. The results showed that participants who preferred Chinese paintings exhibited longer time perceptions for Chinese paintings than for western paintings, while the participants who preferred western paintings exhibited longer time perceptions for western paintings than for Chinese paintings. These results suggested that aesthetic preference could modulate our perceived duration of painting presentation. Specifically, individuals perceive longer painting presentation durations when exposed to the stimuli matching their aesthetic preferences.


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e45438 ◽  
Author(s):  
Sarah McIntyre ◽  
Alex O. Holcombe ◽  
Ingvars Birznieks ◽  
Tatjana Seizova-Cajic

2012 ◽  
Vol 107 (8) ◽  
pp. 2163-2184 ◽  
Author(s):  
Hyun Ah Lee ◽  
Sang-Hun Lee

Prolonged exposure to a single direction of motion alters perception of subsequent static or dynamic stimuli and induces substantial changes in behaviors of motion-sensitive neurons, but the origin of neural adaptation and neural correlates of perceptual consequences of motion adaptation in human brain remain unclear. Using functional magnetic resonance imaging, we measured motion adaptation tuning curves in a fine scale by probing changes in cortical activity after adaptation for a range of directions relative to the adapted direction. We found a clear dichotomy in tuning curve shape: cortical responses in early-tier visual areas reduced at around both the adapted and opposite direction, resulting in a bidirectional tuning curve, whereas response reduction in high-tier areas occurred only at around the adapted direction, resulting in a unidirectional tuning curve. We also found that the psychophysically measured adaptation tuning curves were unidirectional and best matched the cortical adaptation tuning curves in the middle temporal area (MT) and the medial superior temporal area (MST). Our findings are compatible with, but not limited to, an interpretation in which direct impacts of motion adaptation occur in both unidirectional and bidirectional units in early visual areas, but the perceptual consequences of motion adaptation are manifested in the population activity in MT and MST, which may inherit those direct impacts of adaptation from the directionally selective units.


1998 ◽  
Vol 275 (6) ◽  
pp. H1948-H1956 ◽  
Author(s):  
Chohreh Partovian ◽  
Serge Adnot ◽  
Saadia Eddahibi ◽  
Emmanuel Teiger ◽  
Micheline Levame ◽  
...  

Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that is upregulated during exposure to hypoxia. In this study, we analyzed heart and lung VEGF mRNA expression and examined pulmonary vascular remodeling as well as myocardial capillary density in two rat models of pulmonary hypertension involving exposure to chronic hypoxia (CH) and treatment with monocrotaline (MCT), respectively. The rats were studied after 0.5, 1, 3, 15, and 30 days of exposure to 10% O2 or 1, 6, and 30 days after a subcutaneous MCT injection (60 mg/kg). Both CH and MCT induced pulmonary hypertension and hypertrophy of the right ventricle (RV) with increased RV weight and atrial natriuretic peptide mRNA expression. VEGF mRNA expression as assessed by Northern blot analysis was potently induced after 12 h of hypoxia in both the right and left ventricles. After prolonged exposure to hypoxia, VEGF mRNA returned to baseline in the left ventricle (LV) but remained increased in the RV, where it peaked after 30 days. In MCT rats, VEGF mRNA was unchanged in the LV but decreased by 50% in the RV and by 90% in the lungs after 30 days. VEGF mRNA remained unchanged in the lungs from CH rats. Pulmonary vascular remodeling was more pronounced in MCT than in CH rats. The number of capillaries per RV myocyte was increased in rats exposed to 30 days of hypoxia, whereas it remained unchanged in MCT rats despite a similar degree of RV hypertrophy. Our results suggest that the sustained increase in VEGF expression in the hypertrophied RV during CH may account for the increased number of capillaries per myocyte. In contrast, reduced VEGF expression in the lungs and RV of MCT rats may aggravate pulmonary vascular remodeling and compromise RV myocardial perfusion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Feiming Li ◽  
Lei Wang ◽  
Lei Jia ◽  
Jiahao Lu ◽  
Youping Wu ◽  
...  

Previous research has demonstrated that duration of implied motion (IM) was dilated, whereas hMT+ activity related to perceptual processes on IM stimuli could be modulated by their motion coherence. Based on these findings, the present study aimed to examine whether subjective time perception of IM stimuli would be influenced by varying coherence levels. A temporal bisection task was used to measure the subjective experience of time, in which photographic stimuli showing a human moving in four directions (left, right, toward, or away from the viewer) were presented as probe stimuli. The varying coherence of these IM stimuli was manipulated by changing the percentage of pictures implying movement in one direction. Participants were required to judge whether the duration of probe stimulus was more similar to the long or short pre-presented standard duration. As predicted, the point of subjective equality was significantly modulated by the varying coherence of the IM stimuli, but not for no-IM stimuli. This finding suggests that coherence level might be a key mediating factor for perceived duration of IM images, and top-down perceptual stream from inferred motion could influence subjective experience of time perception.


Author(s):  
Welber Marinovic ◽  
Annaliese M. Plooy ◽  
James R. Tresilian

When intercepting a moving target, accurate timing depends, in part, upon starting to move at the right moment. It is generally believed that this is achieved by triggering motor command generation when a visually perceived quantity such as the target’s time-to-arrival reaches a specific criterion value. An experimental method that could be used to determine the moment when this visual event happens was introduced by Whiting and coworkers in the 1970s, and it involves occluding the vision of the target at different times prior to the time of movement onset (MO). This method is limited because the experimenter has no control over MO time. We suggest a method which provides the needed control by having people make interceptive movements of a specific duration. We tested the efficacy of this method in two experiments in which the accuracy of interception was examined under different occlusion conditions. In the first experiment, we examined the effect of changing the timing of an occlusion period (OP) of fixed duration (200 ms). In the second experiment, we varied the duration of the OP (180–430 ms) as well as its timing. The results demonstrated the utility of the proposed method and showed that performance deteriorated only when the participants had their vision occluded from 200 ms prior to MO. The results of Experiment 2 were able to narrow down the critical interval to trigger the interceptive action to within the period from 200 to 150 ms prior to MO, probably closer to 150 ms. In addition, the results showed that the execution of brief interceptive movements (180 ms) was not affected by the range of OPs used in the experiments. This indicates that the whole movement was prepared in advance and triggered by a visual stimulus event that occurred at about 150 ms before onset.


1980 ◽  
Vol 50 (3_suppl) ◽  
pp. 1239-1246
Author(s):  
Sue A. Koch ◽  
Donald J. Polzella ◽  
Frank Da Polito

20 right-handed males judged the duration of small and large colored circles, which were briefly exposed in the left, center, and right visual fields. Perceived duration was a logarithmic function of exposure duration and a positive function of size and chromaticity. Over-all accuracy was equivalent in the left and right visual fields, but the effects of chromaticity and duration on subjects' judgments were asymmetrical. These and other findings suggest a two-process model of time perception in which there is right hemispheric control over a visual information processor and left hemispheric control over a timer.


Sign in / Sign up

Export Citation Format

Share Document