scholarly journals The evolution of plant reproductive systems: how often are transitions irreversible?

2013 ◽  
Vol 280 (1765) ◽  
pp. 20130913 ◽  
Author(s):  
Spencer C. H. Barrett

Flowering plants are characterized by striking variation in reproductive systems, and the evolutionary lability of their sexual traits is often considered a major driver of lineage diversification. But, evolutionary transitions in reproductive form and function are never entirely unconstrained and many changes exhibit strong directionality. Here, I consider why this occurs by examining transitions in pollination, mating and sexual systems, some of which have been considered irreversible. Among pollination systems, shifts from bee to hummingbird pollination are rarely reversible, whereas transitions from animal to wind pollination are occasionally reversed. Specialized pollination systems can become destabilized through a loss of pollinator service resulting in a return to generalized pollination, or more commonly a reliance on self-pollination. Homomorphic and heteromorphic self-incompatibility systems have multiple origins but breakdown to self-compatibility occurs much more frequently with little evidence for subsequent gains, at least over short time-spans. Similarly, numerous examples of the shift from outcrossing to predominant self-fertilization are known, but cases of reversal are very limited supporting the view that autogamy usually represents an evolutionary dead-end. The evolution of dioecy from hermaphroditism has also been considered irreversible, although recent evidence indicates that the occurrence of sex inconstancy and hybridization can lead to the origin of derived sexual systems from dioecy. The directionality of many transitions clearly refutes the notion of unconstrained reproductive flexibility, but novel adaptive solutions generally do not retrace earlier patterns of trait evolution.

Author(s):  
Anthony P. Russell ◽  
Austin M. Garner

Recent years have witnessed a multitude of studies focusing on gekkotan adhesion. Intense interest in this phenomenon was triggered by the discovery of the manner and magnitude of the forces generated by the hair-like filaments (setae) on the toe pads and inspired the development of the next generation of smart, reversible synthetic adhesives. Most studies pursuing these goals have concentrated on the generalized form and properties of gekkotan setae outlined in those key early studies, resulting in the fabrication of synthetic filaments of uniform dimensions. Although there are over 1,800 species of extant geckos, and hundreds of species of anoles (a separate lizard lineage that has convergently evolved adhesive toe pads), most investigations have used relatively few species as the source of basic information, the Tokay gecko (Gekko gecko) being the most prominent among these. Such exemplar taxa generally exhibit structurally intricate setae and morphologically complex configurations of the adhesive apparatus. Setal structure taken to be characteristic of these taxa is generally reported by singular statements of maximal length, diameter, density and branching pattern. Contemporaneous work focusing on the configuration of setae at locations across the toe pads and upon the evolutionary origin of adhesively competent digits in anoles and specific lineages of geckos, however, has revealed extensive variation of setal structure within individuals, information about how setae may have arisen from non-adhesive filamentous precursors, and how newly adhesively competent digits have been integrated into pre-existing patterns of locomotor mechanics and kinematics. Such observations provide insights into what is minimally necessary for adhesively competent digits to function and reveal the simplest configuration of components that make this possible. We contend that information gleaned from such studies will assist those seeking to employ the principles of fibrillar-based adhesion, as exemplified by lizards, for bio-inspired applications.


Author(s):  
Patricia G. Arscott ◽  
Gil Lee ◽  
Victor A. Bloomfield ◽  
D. Fennell Evans

STM is one of the most promising techniques available for visualizing the fine details of biomolecular structure. It has been used to map the surface topography of inorganic materials in atomic dimensions, and thus has the resolving power not only to determine the conformation of small molecules but to distinguish site-specific features within a molecule. That level of detail is of critical importance in understanding the relationship between form and function in biological systems. The size, shape, and accessibility of molecular structures can be determined much more accurately by STM than by electron microscopy since no staining, shadowing or labeling with heavy metals is required, and there is no exposure to damaging radiation by electrons. Crystallography and most other physical techniques do not give information about individual molecules.We have obtained striking images of DNA and RNA, using calf thymus DNA and two synthetic polynucleotides, poly(dG-me5dC)·poly(dG-me5dC) and poly(rA)·poly(rU).


2011 ◽  
Author(s):  
Scott Fluke ◽  
Russell J. Webster ◽  
Donald A. Saucier

2013 ◽  
Author(s):  
Joshua Wilt ◽  
William Revelle

Author(s):  
Barbara Schönig

Going along with the end of the “golden age” of the welfare state, the fordist paradigm of social housing has been considerably transformed. From the 1980s onwards, a new paradigm of social housing has been shaped in Germany in terms of provision, institutional organization and design. This transformation can be interpreted as a result of the interplay between the transformation of national welfare state and housing policies, the implementation of entrepreneurial urban policies and a shift in architectural and urban development models. Using an integrated approach to understand form and function of social housing, the paper characterizes the new paradigm established and nevertheless interprets it within the continuity of the specific German welfare resp. housing regime, the “German social housing market economy”.


1988 ◽  
Vol 6 (1) ◽  
pp. 27-59 ◽  
Author(s):  
Joseph P. Swain

Sign in / Sign up

Export Citation Format

Share Document