scholarly journals Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp

2019 ◽  
Vol 286 (1896) ◽  
pp. 20181887 ◽  
Author(s):  
Zhiguang Qiu ◽  
Melinda A. Coleman ◽  
Euan Provost ◽  
Alexandra H. Campbell ◽  
Brendan P. Kelaher ◽  
...  

Climate change is driving global declines of marine habitat-forming species through physiological effects and through changes to ecological interactions, with projected trajectories for ocean warming and acidification likely to exacerbate such impacts in coming decades. Interactions between habitat-formers and their microbiomes are fundamental for host functioning and resilience, but how such relationships will change in future conditions is largely unknown. We investigated independent and interactive effects of warming and acidification on a large brown seaweed, the kelp Ecklonia radiata , and its associated microbiome in experimental mesocosms. Microbial communities were affected by warming and, during the first week, by acidification. During the second week, kelp developed disease-like symptoms previously observed in the field. The tissue of some kelp blistered, bleached and eventually degraded, particularly under the acidification treatments, affecting photosynthetic efficiency. Microbial communities differed between blistered and healthy kelp for all treatments, except for those under future conditions of warming and acidification, which after two weeks resembled assemblages associated with healthy hosts. This indicates that changes in the microbiome were not easily predictable as the severity of future climate scenarios increased. Future ocean conditions can change kelp microbiomes and may lead to host disease, with potentially cascading impacts on associated ecosystems.

2009 ◽  
Vol 276 (1663) ◽  
pp. 1883-1888 ◽  
Author(s):  
Maria Byrne ◽  
Melanie Ho ◽  
Paulina Selvakumaraswamy ◽  
Hong D. Nguyen ◽  
Symon A. Dworjanyn ◽  
...  

Global warming is causing ocean warming and acidification. The distribution of Heliocidaris erythrogramma coincides with the eastern Australia climate change hot spot, where disproportionate warming makes marine biota particularly vulnerable to climate change. In keeping with near-future climate change scenarios, we determined the interactive effects of warming and acidification on fertilization and development of this echinoid. Experimental treatments (20–26°C, pH 7.6–8.2) were tested in all combinations for the ‘business-as-usual’ scenario, with 20°C/pH 8.2 being ambient. Percentage of fertilization was high (>89%) across all treatments. There was no difference in percentage of normal development in any pH treatment. In elevated temperature conditions, +4°C reduced cleavage by 40 per cent and +6°C by a further 20 per cent. Normal gastrulation fell below 4 per cent at +6°C. At 26°C, development was impaired. As the first study of interactive effects of temperature and pH on sea urchin development, we confirm the thermotolerance and pH resilience of fertilization and embryogenesis within predicted climate change scenarios, with negative effects at upper limits of ocean warming. Our findings place single stressor studies in context and emphasize the need for experiments that address ocean warming and acidification concurrently. Although ocean acidification research has focused on impaired calcification, embryos may not reach the skeletogenic stage in a warm ocean.


2006 ◽  
Vol 106 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Michael B. Jones ◽  
Alison Donnelly ◽  
Fabrizio Albanito

2002 ◽  
Vol 19 ◽  
pp. 179-192 ◽  
Author(s):  
M Lal ◽  
H Harasawa ◽  
K Takahashi

Author(s):  
Sylvia Edgerton ◽  
Michael MacCracken ◽  
Meng-Dawn Cheng ◽  
Edwin Corporan ◽  
Matthew DeWitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document