scholarly journals Phylogenetic clustering and rarity imply risk of local species extinction in prospective deep-sea mining areas of the Clarion–Clipperton Fracture Zone

2020 ◽  
Vol 287 (1924) ◽  
pp. 20192666 ◽  
Author(s):  
Lara Macheriotou ◽  
Annelien Rigaux ◽  
Sofie Derycke ◽  
Ann Vanreusel

An understanding of the forces controlling community structure in the deep sea is essential at a time when its pristineness is threatened by polymetallic nodule mining. Because abiotically defined communities are more sensitive to environmental change, we applied occurrence- and phylogeny-based metrics to determine the importance of biotic versus abiotic structuring processes in nematodes, the most abundant invertebrate taxon of the Clarion–Clipperton Fracture Zone (CCFZ), an area targeted for mining. We investigated the prevalence of rarity and the explanatory power of environmental parameters with respect to phylogenetic diversity (PD). We found evidence for aggregation and phylogenetic clustering in nematode amplicon sequence variants (ASVs) and the dominant genus Acantholaimus , indicating the influence of environmental filtering, sympatric speciation, affinity for overlapping habitats and facilitation for community structure. PD was associated with abiotic variables such as total organic carbon, chloroplastic pigments equivalents and/or mud content, explaining up to 57% of the observed variability and providing further support of the prominence of environmental structuring forces. Rarity was high throughout, ranging from 64 to 75% unique ASVs. Communities defined by environmental filtering with a prevalence of rarity in the CCFZ suggest taxa of these nodule-bearing abyssal plains will be especially vulnerable to the risk of extinction brought about by the efforts to extract them.

2019 ◽  
Author(s):  
Daphne Cuvelier ◽  
Pedro A. Ribeiro ◽  
Sofia P. Ramalho ◽  
Daniel Kersken ◽  
Pedro Martinez Arbizu ◽  
...  

Abstract. Seamounts are abundant and prominent features on the deep-sea floor and intersperse with the nodule fields of the Clarion-Clipperton Fracture Zone (CCZ). There is a particular interest in characterising the fauna inhabiting seamounts in the CCZ because they are the only other ecosystem in the region to provide hard substrata besides the abundant nodules on the soft sediment abyssal plains. It has been hypothesised that seamounts could provide refuge for organisms during deep-sea mining actions or that they could play a role in the (re-)colonisation of the disturbed nodule fields. This hypothesis is tested by analysing video transects in both ecosystems, assessing megafauna composition and abundance. Nine video transects (ROV dives) from two different license areas and one Area of Particular Environmental Interest in the eastern CCZ were analysed. Four of these transects were carried out as exploratory dives on four different seamounts in order to gain first insights in megafauna composition. The five other dives were carried out in the neighbouring nodule fields in the same areas. Variation in community composition observed among and along the video transects was high, with little morphospecies overlap on intra-ecosystem transects. Despite these observations of considerable faunal variations within each ecosystem, differences between seamounts and nodule fields prevailed, showing significantly different species associations characterising them, thus questioning their use as a possible refuge area.


2020 ◽  
Vol 17 (9) ◽  
pp. 2657-2680 ◽  
Author(s):  
Daphne Cuvelier ◽  
Pedro A. Ribeiro ◽  
Sofia P. Ramalho ◽  
Daniel Kersken ◽  
Pedro Martinez Arbizu ◽  
...  

Abstract. Seamounts are abundant and prominent features on the deep-sea floor and intersperse with the nodule fields of the Clarion-Clipperton Fracture Zone (CCZ). There is a particular interest in characterising the fauna inhabiting seamounts in the CCZ because they are the only other ecosystem in the region to provide hard substrata besides the abundant nodules on the soft-sediment abyssal plains. It has been hypothesised that seamounts could provide refuge for organisms during deep-sea mining actions or that they could play a role in the (re-)colonisation of the disturbed nodule fields. This hypothesis is tested by analysing video transects in both ecosystems, assessing megafauna composition and abundance. Nine video transects (ROV dives) from two different license areas and one Area of Particular Environmental Interest in the eastern CCZ were analysed. Four of these transects were carried out as exploratory dives on four different seamounts in order to gain first insights into megafauna composition. The five other dives were carried out in the neighbouring nodule fields in the same areas. Variation in community composition observed among and along the video transects was high, with little morphospecies overlap along intra-ecosystem transects. Despite the observation of considerable faunal variations within each ecosystem, differences between seamounts and nodule fields prevailed, showing significantly different species associations characterising them, thus calling into question their use as a possible refuge area.


Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Benjamin Gillard ◽  
Kaveh Purkiani ◽  
Damianos Chatzievangelou ◽  
Annemiek Vink ◽  
Morten H. Iversen ◽  
...  

The anthropogenic impact of polymetallic nodule harvesting in the Clarion-Clipperton Fracture Zone is expected to strongly affect the benthic ecosystem. To predict the long-term, industrial-scale impact of nodule mining on the deep-sea environment and to improve the reliability of the sediment plume model, information about the specific characteristics of deep-sea particles is needed. Discharge simulations of mining-related fine-grained (median diameter ≈ 20 μm) sediment plumes at concentrations of 35–500 mg L–1 (dry weight) showed a propensity for rapid flocculation within 10 to 135 min, resulting in the formation of large aggregates up to 1100 μm in diameter. The results indicated that the discharge of elevated plume concentrations (500 mg L–1) under an increased shear rate (G ≥ 2.4 s–1) would result in improved efficiency of sediment flocculation. Furthermore, particle transport model results suggested that even under typical deep-sea flow conditions (G ≈ 0.1 s–1), rapid deposition of particles could be expected, which would restrict heavy sediment blanketing (several centimeters) to a smaller fall-out area near the source, unless subsequent flow events resuspended the sediments. Planning for in situ tests of these model projections is underway.


Sign in / Sign up

Export Citation Format

Share Document