scholarly journals Replay of innate vocal patterns during night sleep in suboscines

2021 ◽  
Vol 288 (1953) ◽  
pp. 20210610
Author(s):  
Juan F. Döppler ◽  
Manon Peltier ◽  
Ana Amador ◽  
Franz Goller ◽  
Gabriel B. Mindlin

Activation of forebrain circuitry during sleep has been variably characterized as ‘pre- or replay’ and has been linked to memory consolidation. The evolutionary origins of this mechanism, however, are unknown. Sleep activation of the sensorimotor pathways of learned birdsong is a particularly useful model system because the muscles controlling the vocal organ are activated, revealing syringeal activity patterns for direct comparison with those of daytime vocal activity. Here, we show that suboscine birds, which develop their species-typical songs innately without the elaborate forebrain–thalamic circuitry of the vocal learning taxa, also engage in replay during sleep. In two tyrannid species, the characteristic syringeal activation patterns of the song could also be identified during sleep. Similar to song-learning oscines, the burst structure was more variable during sleep than daytime song production. In kiskadees ( Pitangus sulphuratus ), a second vocalization, which is part of a multi-modal display, was also replayed during sleep along with one component of the visual display. These data show unambiguously that variable ‘replay’ of stereotyped vocal motor programmes is not restricted to programmes confined within forebrain circuitry. The proposed effects on vocal motor programme maintenance are, therefore, building on a pre-existing neural mechanism that predates the evolution of learned vocal motor behaviour.

2017 ◽  
Author(s):  
Ludivine Pidoux ◽  
Pascale Leblanc ◽  
Arthur Leblois

AbstractSpeech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.


2017 ◽  
Author(s):  
Bingbing Guo ◽  
Zhengang Lu ◽  
Jessica E. Goold ◽  
Huan Luo ◽  
Ming Meng

ABSTRACTThe brain dynamically creates predictions about upcoming stimuli to guide perception efficiently. Recent behavioral results suggest theta-band oscillations contribute to this prediction process, however litter is known about the underlying neural mechanism. Here, we combine fMRI and a time-resolved psychophysical paradigm to access fine temporal-scale profiles of the fluctuations of brain activation patterns corresponding to visual object priming. Specifically, multi-voxel activity patterns in the fusiform face area (FFA) and the parahippocampal place area (PPA) show temporal fluctuations at a theta-band (~5 Hz) rhythm. Importantly, the theta-band power in the FFA negatively correlates with reaction time, further indicating the critical role of the observed cortical theta oscillations. Moreover, alpha-band (~10 Hz) shows a dissociated spatial distribution, mainly linked to the occipital cortex. These findings, to our knowledge, are the first fMRI study that indicates temporal fluctuations of multi-voxel activity patterns and that demonstrates theta and alpha rhythms in relevant brain areas.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ludivine Pidoux ◽  
Pascale Le Blanc ◽  
Carole Levenes ◽  
Arthur Leblois

Speech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.


2021 ◽  
Author(s):  
Judith M. Varkevisser ◽  
Ralph Simon ◽  
Ezequiel Mendoza ◽  
Martin How ◽  
Idse van Hijlkema ◽  
...  

AbstractBird song and human speech are learned early in life and for both cases engagement with live social tutors generally leads to better learning outcomes than passive audio-only exposure. Real-world tutor–tutee relations are normally not uni- but multimodal and observations suggest that visual cues related to sound production might enhance vocal learning. We tested this hypothesis by pairing appropriate, colour-realistic, high frame-rate videos of a singing adult male zebra finch tutor with song playbacks and presenting these stimuli to juvenile zebra finches (Taeniopygia guttata). Juveniles exposed to song playbacks combined with video presentation of a singing bird approached the stimulus more often and spent more time close to it than juveniles exposed to audio playback only or audio playback combined with pixelated and time-reversed videos. However, higher engagement with the realistic audio–visual stimuli was not predictive of better song learning. Thus, although multimodality increased stimulus engagement and biologically relevant video content was more salient than colour and movement equivalent videos, the higher engagement with the realistic audio–visual stimuli did not lead to enhanced vocal learning. Whether the lack of three-dimensionality of a video tutor and/or the lack of meaningful social interaction make them less suitable for facilitating song learning than audio–visual exposure to a live tutor remains to be tested.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Jie Zang ◽  
Shenquan Liu

Anterior forebrain pathway (AFP), a basal ganglia-dorsal forebrain circuit, significantly impacts birdsong, specifically in juvenile or deaf birds. Despite many physiological experiments supporting AFP’s role in song production, the mechanism underlying it remains poorly understood. Using a computational model of the anterior forebrain pathway and song premotor pathway, we examined the dynamic process and exact role of AFP during song learning and distorted auditory feedback (DAF). Our simulation suggests that AFP can adjust the premotor pathway structure and syllables based on its delayed input to the robust nucleus of the archistriatum (RA). It is also indicated that the adjustment to the synaptic conductance in the song premotor pathway has two phases: normal phases where the adjustment decreases with an increasing number of trials and abnormal phases where the adjustment remains stable or even increases. These two phases alternate and impel a specific effect on birdsong based on AFP’s specific structures, which may be associated with auditory feedback. Furthermore, our model captured some characteristics shown in birdsong experiments, such as similarities in pitch, intensity, and duration to real birds and the highly abnormal features of syllables during DAF.


2019 ◽  
Vol 18 (2) ◽  
pp. 283-293 ◽  
Author(s):  
Mark L.C.M. Bruurmijn ◽  
Wouter Schellekens ◽  
Mathijs A.H. Raemaekers ◽  
Nick F. Ramsey

AbstractFor some experimental approaches in brain imaging, the existing normalization techniques are not always sufficient. This may be the case if the anatomical shape of the region of interest varies substantially across subjects, or if one needs to compare the left and right hemisphere in the same subject. Here we propose a new standard representation, building upon existing normalization methods: Cgrid (Cartesian geometric representation with isometric dimensions). Cgrid is based on imposing a Cartesian grid over a cortical region of interest that is bounded by anatomical (atlas-based) landmarks. We applied this new representation to the sensorimotor cortex and we evaluated its performance by studying the similarity of activation patterns for hand, foot and tongue movements between subjects, and similarity between hemispheres within subjects. The Cgrid similarities were benchmarked against the similarities of activation patterns when transformed into standard MNI space using SPM, and to similarities from FreeSurfer’s surface-based normalization. For both between-subject and between-hemisphere comparisons, similarity scores in Cgrid were high, similar to those from FreeSurfer normalization and higher than similarity scores from SPM’s MNI normalization. This indicates that Cgrid allows for a straightforward way of representing and comparing sensorimotor activity patterns across subjects and between hemispheres of the same subjects.


2010 ◽  
Vol 104 (2) ◽  
pp. 984-993 ◽  
Author(s):  
Jorge M. Méndez ◽  
Analía G. Dall'Asén ◽  
Brenton G. Cooper ◽  
Franz Goller

Vocal learning, a key behavior in human speech development, occurs only in a small number of animal taxa. Ontogeny of vocal behavior in humans and songbirds involves acquisition of an acoustic model, which guides the development of self-generated vocalizations (sensorimotor period). How vocal development proceeds in the absence of an acoustic model is largely unknown and cannot be studied directly in humans. Here we explored the effects of an acoustic model on song motor control by comparing peripheral motor gestures (respiration and syringeal muscles) of tutored birds with those of birds raised in acoustic isolation. Although the overall use of syringeal muscles during song was similar in both groups, tutored birds displayed enhanced temporal patterns of activation in respiratory and syringeal motor gestures. Muscle activation was more uniformly distributed throughout the song of tutored birds than that of untutored birds. Similarly, the respiratory effort was similar for both groups, but the expiratory pulses of song contained more modulations and temporal complexity in tutored birds. These results indicate that the acquisition of an acoustic template guides a refinement of experience-independent motor gestures by increasing temporal fine structure, but there is no difference in bilateral activation patterns for a given sound between the two groups. Nevertheless, these subtle temporal changes in muscle activation give rise to pronounced acoustic differences between the songs of the tutored and untutored birds. Experience with song during ontogeny therefore guides a more refined use of experience-independent motor programs.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yonghua Wu

Abstract Background Many living birds exhibit some nocturnal activity, but the genetic basis and evolutionary origins of their nocturnality remain unknown. Results Here, we used a molecular phyloecological approach to analyze the adaptive evolution of 33 phototransduction genes in diverse bird lineages. Our results suggest that functional enhancement of two night-vision genes, namely, GRK1 and SLC24A1, underlies the nocturnal adaption of living birds. Further analyses showed that the diel activity patterns of birds have remained relatively unchanged since their common ancestor, suggesting that the widespread nocturnal activity of many living birds may largely stem from their common ancestor rather than independent evolution. Despite this evolutionary conservation of diel activity patterns in birds, photoresponse recovery genes were found to be frequently subjected to positive selection in diverse bird lineages, suggesting that birds generally have evolved an increased capacity for motion detection. Moreover, we detected positive selection on both dim-light vision genes and bright-light vision genes in the class Aves, suggesting divergent evolution of the vision of birds from that of reptiles and that different bird lineages have evolved certain visual adaptions to their specific light conditions. Conclusions This study suggests that the widespread nocturnality of extant birds has a deep evolutionary origin tracing back to their common ancestor.


The principal elements of fighting and display in the genus Uca are surveyed from the point-of-view of their apparent evolutionary origins. The components include combat behaviour between males, threat postures, acoustic signals and visual displays. The latter are characterized by rhythmic motions of the large cheliped and other appendages. Combat between males is highly ritualized, with morphological and behavioural deterrents to maximum intensity. When the deterrents are effective the fights are usually without noticeable results. Although serious injury virtually never occurs, when the deterrents are inadequate the loser sometimes gives up his burrow and occasionally does not court for varying periods thereafter. Combat seems to have evolved directly from the decapod motion of grasping combined at low intensities with an appeasement element in which the major cheliped—a releaser of aggressive behaviour—is turned away from the opponent. Threat postures are primarily intention motions of fighting. Both in the burrows and occasionally on the surface stridulation and other acoustic signals are used in threat, courtship or both. Unlike combat behaviour and threat postures, visual display is species-specific. The twenty-odd elements most often occurring in both acoustic and visual display seem clearly to be derived chiefly from feeding, cleaning and threat movements, usually through the intermediary of displacement activities; sometimes the display elements apparently evolved from conflict between feeding and threat tendencies and sometimes from intention motions. Even in species with the most advanced displays, ritualization of some elements is often only partly or temporarily achieved, while the corresponding displacement motion, unaltered and uncomplicated, is frequently elicited. Parallelisms are evident between the courses of evolution in the social behaviour of fiddler crabs and vertebrates.


2005 ◽  
Vol 94 (6) ◽  
pp. 3698-3707 ◽  
Author(s):  
Sarah W. Bottjer

Developmental changes in synaptic properties may act to limit neural and behavioral plasticity associated with sensitive periods. This study characterized synaptic maturation in a glutamatergic thalamo-cortical pathway that is necessary for vocal learning in songbirds. Lesions of the projection from medial dorsolateral nucleus of the thalamus (DLM) to the cortical nucleus lateral magnocellular nucleus of the anterior nidopallium (LMAN) greatly disrupt song behavior in juvenile birds during early stages of vocal learning. However, such lesions lose the ability to disrupt vocal behavior in normal birds at 60–70 days of age, around the time that selective auditory tuning for each bird’s own song (BOS) emerges in LMAN neurons. This pattern has suggested that LMAN is involved in processing song-related information and evaluating the degree to which vocal motor output matches the tutor song to be learned. Analysis of reversed excitatory postsynaptic currents at DLM→LMAN synapses in in vitro slice preparations revealed a pronounced N-methyl-d-aspartate receptor (NMDAR)-mediated component in both juvenile and adult cells with no developmental decrease in the relative contribution of NMDARs to synaptic transmission. However, the synaptic failure rate at DLM→LMAN synapses in juvenile males during the sensitive period for song learning was significantly lower at depolarized potentials than at hyperpolarized potentials. In contrast, the failure rate at DLM→LMAN synapses did not differ at hyper- versus depolarized holding potentials in adult males that had completed the acquisition of a stereotyped song. This pattern indicates that juvenile cells have a higher incidence of silent (NMDAR-only) synapses, which are postsynaptically silent at hyperpolarized potentials due to the voltage-dependent gating of NMDARs. Thus the decreased involvement of the LMAN pathway in vocal behavior is mirrored by a decline in the incidence of silent synapses but not by changes in the relative number of NMDA and AMPA receptors at DLM→LMAN synapses. These findings suggest that a developmental decrease in silent synapses within LMAN may represent a neural correlate of behavioral plasticity during song learning.


Sign in / Sign up

Export Citation Format

Share Document